生成 有向无环图

1. 引言

做 图的相关算法 的 代码测试的时候, 光看 映射表很不直观, 有时候 生成的图 有问题 也没法 很快 很直观的发现, 有了 PlantUML 就可以直接渲染出来,很直观.

2. 相关代码

2.1. 数据结构
import java.util.ArrayList;
import java.util.List;

/**
 * @author CC11001100
 */
public class Vector<T> {

    private T name;
    private List<Vector<T>> from;
    private List<Vector<T>> to;

    public Vector(T name) {
        this.name = name;
        this.from = new ArrayList<>();
        this.to = new ArrayList<>();
    }

    public T getName() {
        return name;
    }

    public void setName(T name) {
        this.name = name;
    }

    public void toNode(Vector<T> t){
        this.to.add(t);
    }

    public void fromNode(Vector<T> t){
        this.from.add(t);
    }

    public boolean isEmptyTo(){
        return this.to.isEmpty();
    }

    public boolean isEmptyFrom(){
        return this.from.isEmpty();
    }

    public List<Vector<T>> getFrom() {
        return from;
    }
//
    public List<Vector<T>> getTo() {
        return to;
    }
}
2.2. 生成 DAG 映射关系图
import java.util.HashMap;
import java.util.List;
import java.util.Random;
import java.util.Stack;

/**
 * 生成随机DAG
 *
 * @author CC11001100
 */
public class DAGGenerator {

    private static HashMap<String, Boolean> m_map = new HashMap<String, Boolean>();

    private static  final  int NodeRange = 5;
    private static String buildKey(int startIndex, int targetIndex){
        return String.format("%d_%d", startIndex, targetIndex);
    }

    private static <T> boolean DFS(Stack<Vector<T>> stack, Vector<T> tNode){
        Vector<T> NodeA = stack.lastElement();
        int size = NodeA.getTo().size();
        for(int i = 0; i < size; i ++){
            Vector<T> NodeB = NodeA.getTo().get(i);
            if (NodeB == tNode){
                return true;
            }
            stack.push(NodeB);
            boolean ret = DFS(stack, tNode);
            if (ret){
                return true;
            }
        }

        stack.pop();
        return false;
    }
    /*
        通过  DFS 避免出现 环状
        遍历 start 找到 start 到 target 的通路
     */
    private static <T> boolean checkCircleDFS(int startIndex, int targetIndex, List<Vector<T>> vectorList){
        String key = buildKey(startIndex, targetIndex);
        if (m_map.containsKey(key)){
            System.out.println("m_map contains " + key);
            return true;
        }else {
            Vector<T> NodeA = vectorList.get(startIndex);
            Stack<Vector<T>> stack = new Stack<Vector<T>>();
            stack.push(NodeA);

            Vector<T> targetNode = vectorList.get(targetIndex);

            boolean ret = DFS(stack, targetNode);
            if (ret){
                System.out.println("DFS find " + key);
                m_map.put(key, true);
                return true;
            }
        }
        return false;
    }

    public static <T> int getANode(List<Vector<T>> vectorList, int index){
        int random_index = 0;
        int dowhileTag = -1;
        Random random = new Random();

        Vector<T> NodeA = vectorList.get(index);

        int find_count = 20;

        int vec_count = vectorList.size();
        do {
            random_index = random.nextInt(vec_count - 1);
            dowhileTag = 0;

            if (random_index == index) {
                dowhileTag = 1;
            }

            if ((dowhileTag == 0) && NodeA.getTo().contains(vectorList.get(random_index))) {
                dowhileTag = 2;
            }

            if ((dowhileTag == 0) && checkCircleDFS(random_index, index, vectorList)) {
                find_count = find_count - 1;
                dowhileTag = 3;
            }

            System.out.println(" index = " + index + " random_index = " + random_index + " dowhileTag = " + dowhileTag + " NodeA.getTo() = " + NodeA.getTo().size() );
        }while ((dowhileTag > 0) && (find_count > 0)); // 检查 是否存在 反向的路径

        if (find_count <= 0){
            random_index = -1;
        }
        return random_index;
    }


    /**
     * DFS 来 给 vectorList 建立 边的关系 确保没有环状
     *
     * @param vectorList
     * @return
     */
    public static <T> void randomDFS(List<Vector<T>> vectorList) {
        Random random = new Random();
        m_map.clear();

        int vec_count = vectorList.size();
        for (int i = 0, end = vec_count; i < end; i++) {
            int range = random.nextInt(1, NodeRange);
            Vector<T> NodeA = vectorList.get(i);
            for (int j = 0; j < range; j++) {
                int random_index = getANode(vectorList, i);
                if (random_index > 0) {
                    Vector<T> NodeB = vectorList.get(random_index);
                    NodeA.toNode(NodeB);
                    NodeB.fromNode(NodeA);
                }
            }
        }

        // 检查是否有除了第一个顶点之外入度为0的顶点,如果有的话就从前面的顶点中随机选一个连过来,这个是为了避免有独立的顶点存在
        for (int i = 1, end = vec_count; i < end; i++) {
            Vector<T> NodeA = vectorList.get(i);
            if (NodeA.isEmptyTo() && NodeA.isEmptyFrom()) {
                int random_index = getANode(vectorList, i);
                if (random_index > 0) {
                    Vector<T> NodeB = vectorList.get(random_index);
                    NodeA.toNode(NodeB);
                    NodeB.fromNode(NodeA);
                }
            }
        }
    }

     /**
     * 传入一个拓扑排序好的顶点列表,然后从这个拓扑排序中随机生成一个DAG
     *
     * @param vectorList
     * @return
     */
    public static <T> void randomTuopu(List<Vector<T>> vectorList) {
        Random random = new Random();

        int vec_count = vectorList.size();
        for (int i = 0, end = vec_count - 1; i < end; i++) {
            int range = random.nextInt(1, NodeRange);
            range = Math.min(range, vec_count - i - 1);

            System.out.print(" i = "+  i  + " range = " +  range);
            Vector<T> NodeA = vectorList.get(i);
            for (int j = 0; j < range; j++) {
                int random_index = random.nextInt(i + 1, vec_count);

                Vector<T> NodeB = vectorList.get(random_index);
                while(NodeA.getTo().contains(NodeB)){
                    random_index = random.nextInt(i + 1, vec_count);
                    NodeB = vectorList.get(random_index);

                    System.out.print(" i = "+  i + " j = " +  j + " random_index = " +  random_index +  "  range = " + range);
                }
                NodeA.toNode(NodeB);
                NodeB.fromNode(NodeA);
            }
        }

        // 检查是否有除了第一个顶点之外入度为0的顶点,如果有的话就从前面的顶点中随机选一个连过来,这个是为了避免有独立的顶点存在
        for (int i = 1, end = vectorList.size(); i < end; i++) {
            Vector<T> to = vectorList.get(i);
            if (to.getFrom().isEmpty()) {
                Vector<T> from = vectorList.get(random.nextInt(i));
                from.getTo().add(to);
                to.getFrom().add(from);
            }
        }
    }
}
2.3. 调用代码
import java.util.ArrayList;
import java.util.List;


/**
 * @author CC11001100
 */
public class TestDAGGenerator {

    /**
     * FORMAT:
     *
     * <pre>
     * digraph abc{
     *   a;
     *   b;
     *   c;
     *   d;
     *
     *   a -> b;
     *   b -> d;
     *   c -> d;
     * }
     * </pre>
     *
     * @param graphName
     * @param vectorList
     */
    public static <T> String convertToDot(String graphName, List<Vector<T>> vectorList) {
        StringBuilder sb = new StringBuilder();
        sb.append("@startuml\n\n")
                .append("digraph ").append(graphName).append(" {\n");
        vectorList.forEach(vector -> sb.append("    ").append(vector.getName()).append(";\n"));
        sb.append("\n");
        vectorList.forEach(from -> from.getTo().forEach(to -> {
            sb.append("    ").append(from.getName()).append(" -> ").append(to.getName()).append(";\n");
        }));
        sb.append("}\n")
                .append("\n@enduml\n");
        return sb.toString();
    }

    public static void main(String[] args) {

//        final int vectorCount = 30;
        final int vectorCount = 15;
        List<Vector<Integer>> vectorList = new ArrayList<>(vectorCount);
        for (int i = 0; i < vectorCount; i++) {
            vectorList.add(new Vector<>(i));
        }

//        DAGGenerator.randomDFS(vectorList);
        DAGGenerator.randomTuopu(vectorList);

        String dotGraph = convertToDot("test_DAG_generator", vectorList);
        System.out.println(dotGraph);
    }
}

3. 输出结果

大概是 这样, 这是 UML 的语法

@startuml

digraph test_DAG_generator {
    0;
    1;
    2;
    3;
    4;
    5;
    6;
    7;
    8;
    9;
    10;
    11;
    12;
    13;
    14;

    0 -> 7;
    0 -> 12;
    1 -> 11;
    1 -> 5;
    1 -> 6;
    1 -> 9;
    2 -> 5;
    3 -> 4;
    3 -> 10;
    3 -> 11;
    4 -> 11;
    4 -> 1;
    6 -> 2;
    6 -> 9;
    6 -> 7;
    6 -> 13;
    7 -> 8;
    7 -> 11;
    7 -> 10;
    7 -> 9;
    8 -> 13;
    9 -> 12;
    10 -> 13;
    10 -> 11;
    11 -> 9;
    11 -> 2;
    11 -> 8;
    12 -> 13;
    12 -> 2;
    12 -> 5;
    12 -> 8;
    13 -> 2;
    13 -> 5;
    14 -> 5;
    14 -> 8;
    14 -> 2;
    14 -> 6;
}

@enduml

将输出结果 复制到 PlantUML 接可以看到 这个渲染图了
https://www.planttext.com/

4. 渲染图展现

4.1. 30 个节点的 拓扑排序 生成的 有向无环图

4.2 30 个节点的 DFS 生成的 有向无环图

5. 相关概念

拓扑排序的介绍

在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:
每个顶点出现且只出现一次。
若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。
有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说。

作者:灰睛眼蓝
链接:https://www.jianshu.com/p/b59db381561a
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

6. 结语

本文代码 基于 CC11001100 的代码, 感谢作者
用他的代码主体, 但是他的代码生成的图 结点稍微多点 就过于复杂, 所以我上手改了改

posted @ 2023-01-07 11:07  lesten  阅读(457)  评论(0编辑  收藏  举报