如何在Spark-shell中停止打印INFO日志

前言

在使用Spark-shell做一些测试时候会产生大量无用的INFO级别的日志,因此想把它们给禁用掉。具体方法如下。

解决方法

- 使用自定义的Log4j.properties

log4j.rootLogger=ERROR, console

# set the log level for these components
log4j.logger.com.test=DEBUG
log4j.logger.org=ERROR
log4j.logger.org.apache.spark=ERROR
log4j.logger.org.spark-project=ERROR
log4j.logger.org.apache.hadoop=ERROR
log4j.logger.io.netty=ERROR
log4j.logger.org.apache.zookeeper=ERROR

# add a ConsoleAppender to the logger stdout to write to the console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.layout=org.apache.log4j.PatternLayout
# use a simple message format
log4j.appender.console.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n

然后在提交spark-shell时候, 配置 --conf 即可, 这种方法同样适用于Spark-submit

spark-shell \
--conf "spark.driver.extraJavaOptions=-Dlog4j.configuration=file:<file path>/log4j.xml" \
--conf "spark.executor.extraJavaOptions=-Dlog4j.configuration=file:<file path>/log4j.xml"

也可以在提交作业时使用
--conf "spark.driver.extraJavaOptions=-Dlog4jspark.root.logger=WARN,console"

- 在代码中控制

如果是Spark2.x,可以参考下面

//in Scala
SparkSession.builder.getOrCreate().sparkContext.setLogLevel("ERROR")
#in Python
from pyspark.sql import SparkSession
SparkSession.builder.getOrCreate().sparkContext.setLogLevel("ERROR")

Spark1.x

//In Scala
import org.apache.log4j.Logger
import org.apache.log4j.Level

Logger.getLogger("org").setLevel(Level.OFF)
Logger.getLogger("akka").setLevel(Level.OFF)
#In Python
log4j = sc._jvm.org.apache.log4j
log4j.LogManager.getRootLogger().setLevel(log4j.Level.ERROR)
posted @ 2019-04-02 10:31  LestatZ  阅读(3180)  评论(0编辑  收藏  举报