Python中使用Scrapy爬虫抓取上海链家房价信息
前言
之前用python写了一个简单的爬虫项目用来抓取上海链家上的一些房价信息,整理了下代码,特此记录
准备工作
- 安装Scrapy
创建一个新的Scrapy项目
例如,我们可以使用指令 scrapy startproject Lianjia
创建一个名为Lianjia的scrapy项目
$ scrapy startproject Lianjia
New Scrapy project 'Lianjia', using template directory '/usr/local/anaconda3/lib/python3.6/site-packages/scrapy/templates/project', created in:
/Users/lestat/PyProjects/Lianjia
You can start your first spider with:
cd Lianjia
scrapy genspider example example.com
运行完该指令后,scrapy会为该项目创建Lianjia文件及相关文件,Lianjia文件夹下的目录结构如下:
.
├── Lianjia # Python模块,所有的代码都放这里面
│ ├── __init__.py
│ ├── __pycache__
│ ├── items.py # Item定义文件
│ ├── middlewares.py
│ ├── pipelines.py # pipelines定义文件
│ ├── settings.py # 配置文件
│ └── spiders # 所有爬虫spider都放这个文件夹下面
│ ├── __init__.py
│ └── __pycache__
└── scrapy.cfg # 部署配置文件
4 directories, 7 files
定义一个爬虫Spider
以下是一个可以抓取需要的链家搜索结果页面信息的spider
# Lianjia/Lianjia/spiders/summ_info.py
# -*- coding: utf-8 -*-
import scrapy
import time, sys
#scrapy runspider spiders/summ_info.py -a query=ershoufang/ie2y4l2l3a3a4p5 -o ./data/result4.csv
class LianjiaSpider(scrapy.Spider):
name = "fetchSummInfo"
allowed_domains = ['sh.lianjia.com']
headers = { 'user-agent':"Mozilla/5.0"}
query_prefix = "li143685059s100021904/ie2y4l2l3a3a4p5"
query_prefix2 = "ershoufang/huangpu/ie2y4l2l3a3a4p5"
def __init__(self, query='', **kwargs):
self.query = query
self.base_url = "https://sh.lianjia.com"
self.curr_page_no = 1
self.curr_url = "{}/{}pg{}" .format(self.base_url, self.query, self.curr_page_no)
self.last_url = None
super().__init__(**kwargs)
def start_requests(self):
urls = [ self.curr_url ]
for url in urls:
yield scrapy.Request(url=url, callback=self.parse, headers=self.headers)
def parse(self, response):
houseList = response.xpath('//ul[@class="sellListContent"]/li')
if len(houseList) == 0:
sys.exit()
#['title','houseInfo1','houseInfo2','positionInfo1','positionInfo2','followInfo','totalPrice','unitPrice']
for house in houseList:
item = {
'title': house.xpath('.//div[@class="title"]/a/text()').extract(),
'houseInfo1': house.xpath('.//div[@class="houseInfo"]/a/text()').extract(),
'houseInfo2': house.xpath('.//div[@class="houseInfo"]/text()').extract(),
'positionInfo1': house.xpath('.//div[@class="positionInfo"]/a/text()').extract(),
'positionInfo2': house.xpath('.//div[@class="positionInfo"]/text()').extract(),
'followInfo': house.xpath('.//div[@class="followInfo"]/text()').extract(),
'totalPrice': house.xpath('.//div[@class="totalPrice"]/span/text()').extract(),
'unitPrice': house.xpath('.//div[@class="unitPrice"]/@data-price').extract()
}
yield item
self.curr_page_no += 1
time.sleep(30)
curr_url = "{}/{}pg{}/" .format(self.base_url, self.query, self.curr_page_no)
yield scrapy.Request(url=curr_url, callback=self.parse, headers=self.headers)
导出抓取数据
简单地,我们可以用 -o
选项保存爬虫的抓取结果,如下
$ scrapy runspider spiders/summ_info.py -a query=ershoufang/ie2y4l2l3a3a4p5 -o ./data/result.csv
结果如下:
head ./data/result.csv
保存数据到数据库(MongoDB)
[TO-DO]