学习《统计学习方法》的一些问题
时隔几年,再次阅读此书学习统计学习,仍然很有收获,这里列出来阅读过程中的一些问题,之后有答案了再另写一篇文章。
-
感知机如何判断线性可分?学习(优化)过程中根据迭代次数判断过于低效?
-
Naive Bayes 的贝叶斯估计的先验分布是什么?怎么理解?从结论看很合理,推理的过程是从结论推导先验分布?
-
决策树的最优树结构为什么是NP问题?
-
决策树的几个算法 ID3 和 CART 的选择特征逻辑非常像,信息增益/Gini系数,有无本质区别?CART剪枝不用选择 a 超参数的性质是否适用于 ID3?
-
决策树的开源库 XGBoost, LightGBM 的单个树生成算法选择了哪个?为什么?
未完待续。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 25岁的心里话
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用