pandas去重方法
原文链接:https://blog.csdn.net/missyougoon/article/details/83926840
数据去重可以使用duplicated()和drop_duplicates()两个方法。
DataFrame.duplicated(subset = None,keep =‘first’ )返回boolean Series表示重复行
参数:
subset:列标签或标签序列,可选
仅考虑用于标识重复项的某些列,默认情况下使用所有列
keep:{‘first’,‘last’,False},默认’first’
- first:标记重复,True除了第一次出现。
- last:标记重复,True除了最后一次出现。
- 错误:将所有重复项标记为True。
import numpy as np import pandas as pd from pandas import Series, DataFrame df = pd.read_csv('./demo_duplicate.csv') print(df) print(df['Seqno'].unique()) # [0. 1.] # 使用duplicated 查看 重复值 # 参数 keep 可以标记重复值 {'first','last',False} print(df['Seqno'].duplicated()) ''' 0 False 1 True 2 True 3 True 4 False Name: Seqno, dtype: bool ''' # 删除 series 重复数据 print(df['Seqno'].drop_duplicates()) ''' 0 0.0 4 1.0 Name: Seqno, dtype: float64 ''' # 删除 dataframe 重复数据 print(df.drop_duplicates(['Seqno'])) # 按照 Seqno 来 去重 ''' Price Seqno Symbol time 0 1623.0 0.0 APPL 1473411962 4 1649.0 1.0 APPL 1473411963 ''' # drop_dujplicates() 第二个参数 keep 包含的值 有: first、last、False print(df.drop_duplicates(['Seqno'], keep='last')) # 保存最后一个 ''' Price Seqno Symbol time 3 1623.0 0.0 APPL 1473411963 4 1649.0 1.0 APPL 1473411963 '''
demo_duplicate.csv文件下载地址:
https://download.csdn.net/download/missyougoon/11174804
学以致用,知行合一
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
· .NET 9 new features-C#13新的锁类型和语义
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 《HelloGitHub》第 106 期
· 数据库服务器 SQL Server 版本升级公告
· 深入理解Mybatis分库分表执行原理
· 使用 Dify + LLM 构建精确任务处理应用