【Nescafe18】七夕祭

背景

七夕节因牛郎织女的传说而被扣上了「情 人节」的帽子。于是 TYVJ 今年举办了一次线 下七夕祭。Vani 同学今年成功邀请到了 cl 同 学陪他来共度七夕,于是他们决定去 TYVJ 七夕祭游玩。

题目描述

TYVJ 七夕祭和 11 区的夏祭的形式很像。矩形的祭典会场由 N 排 M 列共计 N×M 个摊 点组成。虽然摊点种类繁多,不过 cl 只对其中的一部分摊点感兴趣,比如章鱼烧、苹果糖、 棉花糖、射的屋……什么的。Vani 预先联系了七夕祭的负责人 zhq,希望能够通过恰当地布 置会场,使得各行中 cl 感兴趣的摊点数一样多,并且各列中 cl 感兴趣的摊点数也一样多。 不过 zhq 告诉 Vani,摊点已经布置完毕了,唯一的调整方式就是交换两个相邻的摊点。两个 摊点相邻,当且仅当他们处在同一行或者同一列的相邻位置上。由于 zhq 率领的 TYVJ 开发 小组成功地扭曲了空间,每一行或每一列的第一个位置和最后一个位置也算作相邻。现在 Vani 想知道他的两个要求最多能满足多少个。在此前提下,至少需要交换多少次摊点。

输入格式

第一行包含三个整数 N 和 M 和 T。T 表示 cl 对多少个摊点感兴趣。 接下来 T 行,每行两个整数 x, y,表示 cl 对处在第 x 行第 y 列的摊点感兴趣。

输出格式

首先输出一个字符串。如果能满足 Vani 的全部两个要求,输出 both;如果通过调整 只能使得各行中 cl 感兴趣的摊点数一样多,输出 row;如果只能使各列中 cl 感兴趣的摊点 数一样多,输出 column;如果均不能满足,输出 impossible。 如果输出的字符串不是 impossible, 接下来输出最小交换次数,与字符串之间用一 个空格隔开。

思路

分行和列,做环上的均分纸牌问题。
用前缀和找出将环切成链的切分点,前缀和的中位数所在位置即为所求。

代码

写的比较丑,见谅…

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;

struct node{
    int val,pos;
};

bool operator < (node a,node b){
    return a.val<b.val; 
}

int n,m,t,col[100010],row[100010],ans=0;
node prer[100010],prec[100010];
bool column=false,rowb=false;//row行 col列 

int main(){
    memset(col,0,sizeof(col));
    memset(row,0,sizeof(row));
    scanf("%d%d%d",&n,&m,&t);
    for(int i=1;i<=t;i++){
        int c,r;
        scanf("%d%d",&r,&c);
        col[c]+=1; row[r]+=1;
    }

    //for(int i=1;i<=m;i++) prec[i]=prec[i-1]+col[i];

    if(t%m==0) column=true;
    if(t%n==0) rowb=true;
    if(column&&rowb) printf("both");
    else if(column) printf("column");
    else if(rowb) printf("row");
    else printf("impossible");
    if(rowb){
        int avg=t/n;
        prer[0].val=0;
        for(int i=1;i<=n;i++) {
            prer[i].val=prer[i-1].val+row[i];
            prer[i].pos=i;
        }
        sort(prer,prer+n);
        int k; 
        if(!n%2) k=prer[n/2].pos;
        else k=prer[(n+1)/2].pos;
        for(int i=k;i<=k+n-1;i++){
            int cur=i%n;
            if(cur==0) cur=n;
            int next=(i+1)%n;
            if(next==0) next=n;
            int temp=avg-row[cur];
            row[cur]+=temp;
            row[next]-=temp;
            ans+=abs(temp);
        }
    }
    if(column){
        int avg=t/m;
        prec[0].val=0;
        for(int i=1;i<=m;i++) {
            prec[i].val=prec[i-1].val+col[i];
            prec[i].pos=i;
        }
        sort(prec,prec+n);
        int k;
        if(!m%2) k=prer[m/2].pos;
        else k=prer[(m+1)/2].pos;
        for(int i=k;i<=k+m-1;i++){
            int cur=i%m;
            if(cur==0) cur=m;
            int next=(i+1)%m;
            if(next==0) next=m;
            int temp=avg-col[cur];
            col[cur]+=temp;
            col[next]-=temp;
            ans+=abs(temp);
        }
    }
    if(column||rowb) printf(" %d",ans);
    return 0;
}
posted @ 2016-11-04 12:09  Leo.Tan  阅读(126)  评论(0编辑  收藏  举报