微带天线读书计划(三):MICROSTRIP AND PRINTED ANTENNAS by Debatosh Guha in 2011
Chapter 1 Numerical Analysis Techniques
FDTD,LOD-FDTD
Chapter 2 Computer Aided Design of Microstrip Antennas
2.1 Introduction 35
2.2 Microstrip Patch as Cavity Resonator 36
2.3 Resonant Frequency of Circular Microstrip Patch (CMP) 37
2.3.1 Suspended Substrate with Variable Air Gap 38
2.3.2 Inverted Microstrip Circular Patch (IMCP) 42
2.3.3 IMCP Enclosed in a Cylindrical Cavity 44
2.3.4 Superstrate Loaded Circular Microstrip Patch (SL-CMP) 45
2.4 Resonant Frequency of Rectangular Microstrip Patch (RMP)
with Variable Air Gap 47
2.5 Resonant Frequency of Equilateral Triangular Microstrip
Patch (ETMP) with Variable Air Gap 50
2.6 Input Impedance of a Microstrip Patch 51
2.6.1 Input Impedance of CMP 53
2.6.2 Input Impedance of IMCP 55
2.6.3 Input Impedance of RMP 56
2.6.4 Input Impedance of an ETMP 57
2.7 Feed Reactance of a Probe-Fed Microstrip Patch 59
2.8 Radiation Characteristics 59
2.8.1 Rectangular Microstrip Patch 60
2.8.2 Circular Microstrip Patch 61
2.9 Radiation Efficiency 61
2.10 Bandwidth 62
2.11 Conclusion 62
Chapter 3Generalized Scattering Matrix Approach for Multilayer
3.1 Introduction 65
3.2 Outline of the GSM Approach 67
3.2.1 The GSM 67
3.3 Mutual Coupling Formulation 68
3.3.1 Mutual Impedance 69
3.4 Finite Array: Active Impedance and Radiation Patterns 71
3.5 Numerical Example 72
3.6 Conclusion
Chapter4 Optimization Techniques for Planar Antennas
4.1 Introduction 79
4.2 Basic Optimization Concepts 79
4.2.1 Cost (Fitness) Function 79
4.2.2 Design Parameters and Space 80
4.2.3 Global and Local Minima 80
4.3 Real Coded Genetic Algorithm (RCGA) 80
4.3.1 Genetic Algorithm 80
4.3.1.1 RCGA Design 83
4.3.1.2 Genetic Operators 83
4.3.1.3 Heuristic Crossover and Adewuya Mating (Quadratic
Crossover) 85
vi Contents
4.3.2 Sierpinski Gasket Fractal Microstrip Antenna Design 85
4.3.2.1 RCGS Strategy for SGMA 86
4.4 Neurospectral Design of Rectangular Patch Antenna 91
4.4.1 Model Development 93
4.4.1.1 Spectral Domain Formation 93
4.4.1.2 Artificial Neural Network Solution Technique 96
4.4.1.3 Closed Form Expressions for Integration 97
4.4.1.4 Data Generation and Pre-processing 98
4.4.2 Model Implementation 99
4.4.2.1 Simple Patch Antenna 99
4.4.2.2 Feeding Considerations 101
4.4.2.3 Any Other Arbitrary Shape 104
4.4.2.4 Points to Note 104
4.5 Inset-fed Patch Antenna Design Using Particle Swarm
Optimization 106
4.5.1 Explanation of PSO Terms 106
4.5.2 Inset-fed Patch Antenna Design 107
4.6 Conclusion 109
Chapter 5 Microstrip Reflectarray Antenna
5.1 Introduction 113
5.2 General Review of Reflectarrays: Mathematical Formulation and
General Trends 114
5.2.1 Mathematical Formulation 114
5.2.2 General Trends 118
5.3 Comparison of Reflectarray and Conventional Parabolic
Reflector 120
5.3.1 Illumination Efficiency 121
5.3.2 Spill-over Efficiency 122
5.3.3 Polarization Efficiency 122
5.3.4 Phase Efficiency 123
5.3.5 Blockage Efficiency 123
5.4 Cell Elements and Specific Applications: A General Survey 124
5.5 Wideband Techniques for Reflectarrays 133
5.5.1 Phase Response of Reflectarrays 136
5.5.2 Verification of the Optimization Method 144
5.6 Development of Novel Loop-Based Cell Elements 149
5.6.1 Motivation 149
5.6.2 Square Ring Cell Element 151
5.6.3 Cross-Ring Cell Element 153
5.6.4 Hybrid Cell Element 153
Chapter 6 Reconfigurable Microstrip Antennas
Chapter 7Wearable Antennas for Body Area Networks
Chapter 8 Printed Antennas for Wireless Communications
Chapter9 UHF Passive RFID Tag Antennas
Chapter 10 Printed UWB Antennas
Chapter 11 Metamaterial Antennas and Radiative Systems
Chapter 12 Defected Ground Structure for Microstrip Antennas
Chapter 13 Printed Leaky Wave Antennas