宏观数据整理
import akshare as ak import pandas as pd # 将各个数据集放入列表中,方便循环处理 data_frames = [ ak.macro_usa_core_cpi_monthly(), ak.macro_usa_core_pce_price(), ak.macro_usa_gdp_monthly(), ak.macro_usa_non_farm(), ak.macro_usa_unemployment_rate(), ak.macro_china_cpi_yearly(), ak.macro_china_ppi_yearly(), ak.macro_china_pmi_yearly() ] # 用于存储处理后的最新行数据 latest_rows = [] # 循环遍历每个数据集 for df in data_frames: latest_row = df.iloc[-1] if pd.isna(latest_row.iloc[2]): latest_row = df.iloc[-2] latest_rows.append(latest_row) # 构造新的数据,组合成新表 new_data = { "商品": ["美国核心CPI", "美国核心PCE价格", "美国月度GDP","美国非农","美国失业率","中国CPI同比","中国PPI同比","中国PMI"], "日期": [r.iloc[1] for r in latest_rows], "今值": [r.iloc[2] for r in latest_rows] } new_table = pd.DataFrame(new_data) print(new_table)