指数整合优化
import akshare as ak import pandas as pd start_date='2024-12-01' end_date='2024-12-20' # 获取000300的历史行情数据 df_000300 = ak.index_zh_a_hist(symbol="000300") # 获取sh000852的历史行情数据 df_sh000852 = ak.stock_zh_index_daily(symbol="sh000852") # 获取HSI的历史行情数据 df_HSI= ak.stock_hk_index_daily_sina(symbol="HSI") # 获取IXIC的历史行情数据 df_IXIC = ak.index_us_stock_sina(symbol=".IXIC") df_Au = ak.spot_hist_sge(symbol='Au99.99') df_300etf = ak.stock_zh_index_daily_em(symbol="sh510300") df_1000etf = ak.stock_zh_index_daily_em(symbol="sh512100") df_hz = ak.stock_zh_index_daily_em(symbol="sh513600") # 获取黄金指数的历史行情数据 df_goldetf = ak.stock_zh_index_daily_em(symbol="sz159834") # 获取国债指数的历史行情数据 df_bondetf = ak.stock_zh_index_daily_em(symbol="sh511100") # 获取纳指指数的历史行情数据 df_nzetf = ak.stock_zh_index_daily_em(symbol="sz159509") # 将日期列转换为日期时间类型 # 假设所有的数据框都放在这个列表中,你可以根据实际情况调整列表内容 dataframes = [df_000300, df_sh000852, df_HSI, df_IXIC, df_Au, df_300etf, df_1000etf, df_hz, df_goldetf, df_bondetf, df_nzetf] # 遍历列表中的每个数据框,将名为'date'或'日期'的列转换为日期时间类型 for df in dataframes: date_column_name = 'date' if 'date' in df.columns else '日期' df[date_column_name] = pd.to_datetime(df[date_column_name]) date_column_names = ['date' if 'date' in df.columns else '日期' for df in dataframes] for index, (df, date_column) in enumerate(zip(dataframes, date_column_names)): dataframes[index] = df[(df[date_column] >= start_date) & (df[date_column] <= end_date)] # 选取需要的列并进行重命名 df_000300=dataframes[0][['日期', '收盘', '最高', '最低', '成交量']].rename(columns={ '日期': 'date', '收盘': '000300_close', '最高': '000300_high', '最低': '000300_low', '成交量': '000300_volume' }) df_sh000852 = df_sh000852[['date', 'close', 'high', 'low', 'volume']].rename(columns={ 'close': 'sh000852_close', 'high': 'sh000852_high', 'low': 'sh000852_low', 'volume': 'sh000852_volume' }) df_HSI = df_HSI[['date', 'close', 'high', 'low', 'volume']].rename(columns={ 'close': 'HSI_close', 'high': 'HSI_high', 'low': 'HSI_low', 'volume': 'HSI_volume' }) df_IXIC = df_IXIC[['date', 'close', 'high', 'low', 'volume']].rename(columns={ 'close': 'IXIC_close', 'high': 'IXIC_high', 'low': 'IXIC_low', 'volume': 'IXIC_volume' }) df_Au = df_Au[['date', 'close', 'high', 'low']].rename(columns={ 'close': 'Au_close', 'high': 'Au_high', 'low': 'Au_low' }) df_300etf = df_300etf[['date','close']].rename(columns={ 'close': '300etf_close'}) df_1000etf = df_1000etf[['date','close']].rename(columns={ 'close': '1000etf_close'}) df_hz = df_hz[['date','close']].rename(columns={ 'close': 'hz_close'}) df_goldetf = df_goldetf[['date','close']].rename(columns={ 'close': 'goldetf_close'}) df_bondetf = df_bondetf[['date','close']].rename(columns={ 'close': 'bondetf_close'}) df_nzetf = df_nzetf[['date','close']].rename(columns={ 'close': 'nzetf_close'}) # Merge the two DataFrames on the 'date' column for n,i in enumerate([df_000300, df_sh000852, df_HSI, df_IXIC, df_Au, df_300etf, df_1000etf, df_hz, df_goldetf, df_bondetf, df_nzetf]): if n == 0: result = i else: result = pd.merge(result, i, on='date', how='inner') # Display the merged DataFrame result
方法二:
import akshare as ak import pandas as pd start_date='2024/12/01' end_date='2024/12/20' # 获取000300的历史行情数据 df_000300 = ak.index_zh_a_hist(symbol="000300") # 获取sh000852的历史行情数据 df_sh000852 = ak.stock_zh_index_daily(symbol="sh000852") # 获取HSI的历史行情数据 df_HSI= ak.stock_hk_index_daily_sina(symbol="HSI") # 获取IXIC的历史行情数据 df_IXIC = ak.index_us_stock_sina(symbol=".IXIC") df_Au = ak.spot_hist_sge(symbol='Au99.99') df_300etf = ak.stock_zh_index_daily_em(symbol="sh510300") df_1000etf = ak.stock_zh_index_daily_em(symbol="sh512100") df_hz = ak.stock_zh_index_daily_em(symbol="sh513600") # 获取黄金指数的历史行情数据 df_goldetf = ak.stock_zh_index_daily_em(symbol="sz159834") # 获取国债指数的历史行情数据 df_bondetf = ak.stock_zh_index_daily_em(symbol="sh511100") # 获取纳指指数的历史行情数据 df_nzetf = ak.stock_zh_index_daily_em(symbol="sz159509") # 将日期列转换为日期时间类型 dataframes = [df_000300, df_sh000852, df_HSI, df_IXIC, df_Au, df_300etf, df_1000etf, df_hz, df_goldetf, df_bondetf, df_nzetf] # 遍历列表中的每个数据框,将名为'date'或'日期'的列转换为日期时间类型 for df in dataframes: date_column_name = 'date' if 'date' in df.columns else '日期' df[date_column_name] = pd.to_datetime(df[date_column_name]) date_column_names = ['date' if 'date' in df.columns else '日期' for df in dataframes] # 筛选出指定日期范围内的数据 dfs = { 'df_sh000852': df_sh000852, 'df_000300': df_000300, 'df_HSI': df_HSI, 'df_IXIC': df_IXIC, 'df_Au': df_Au, 'df_300etf': df_300etf, 'df_1000etf': df_1000etf, 'df_hz': df_hz, 'df_goldetf': df_goldetf, 'df_bondetf': df_bondetf, 'df_nzetf': df_nzetf } # 遍历字典中的所有DataFrame,并应用日期过滤 for name, df in dfs.items(): # 根据DataFrame中的日期列名称来选择正确的列 date_column = 'date' if 'date' in df.columns else '日期' # 应用日期过滤 dfs[name] = df[(df[date_column] >= start_date) & (df[date_column] <= end_date)] df_000300 = dfs['df_000300'][['日期', '收盘', '最高', '最低', '成交量']].rename(columns={ '日期': 'date', '收盘': '000300_close', '最高': '000300_high', '最低': '000300_low', '成交量': '000300_volume' }) df_sh000852 = df_sh000852[['date', 'close', 'high', 'low', 'volume']].rename(columns={ 'close': 'sh000852_close', 'high': 'sh000852_high', 'low': 'sh000852_low', 'volume': 'sh000852_volume' }) df_HSI = df_HSI[['date', 'close', 'high', 'low', 'volume']].rename(columns={ 'close': 'HSI_close', 'high': 'HSI_high', 'low': 'HSI_low', 'volume': 'HSI_volume' }) df_IXIC = df_IXIC[['date', 'close', 'high', 'low', 'volume']].rename(columns={ 'close': 'IXIC_close', 'high': 'IXIC_high', 'low': 'IXIC_low', 'volume': 'IXIC_volume' }) df_Au = df_Au[['date', 'close', 'high', 'low']].rename(columns={ 'close': 'Au_close', 'high': 'Au_high', 'low': 'Au_low' }) df_300etf = df_300etf[['date','close']].rename(columns={ 'close': '300etf_close'}) df_1000etf = df_1000etf[['date','close']].rename(columns={ 'close': '1000etf_close'}) df_hz = df_hz[['date','close']].rename(columns={ 'close': 'hz_close'}) df_goldetf = df_goldetf[['date','close']].rename(columns={ 'close': 'goldetf_close'}) df_bondetf = df_bondetf[['date','close']].rename(columns={ 'close': 'bondetf_close'}) df_nzetf = df_nzetf[['date','close']].rename(columns={ 'close': 'nzetf_close'}) # Merge the two DataFrames on the 'date' column for n,i in enumerate([df_000300, df_sh000852, df_HSI,df_IXIC,df_Au,df_300etf,df_1000etf,df_hz,df_goldetf,df_bondetf,df_nzetf]): if n == 0: result = i else: result = pd.merge(result, i, on='date', how='inner') # Display the merged DataFrame result