caffe-ubuntu1604-gtx850m-i7-4710hq----bvlc_reference_caffenet.caffemodel
bvlc_reference_caffenet.caffemodel
--- name: BAIR/BVLC CaffeNet Model caffemodel: bvlc_reference_caffenet.caffemodel caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel license: unrestricted sha1: 4c8d77deb20ea792f84eb5e6d0a11ca0a8660a46 caffe_commit: 709dc15af4a06bebda027c1eb2b3f3e3375d5077 --- This model is the result of following the Caffe [ImageNet model training instructions](http://caffe.berkeleyvision.org/gathered/examples/imagenet.html). It is a replication of the model described in the [AlexNet](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) publication with some differences: - not training with the relighting data-augmentation; - the order of pooling and normalization layers is switched (in CaffeNet, pooling is done before normalization). This model is snapshot of iteration 310,000. The best validation performance during training was iteration 313,000 with validation accuracy 57.412% and loss 1.82328. This model obtains a top-1 accuracy 57.4% and a top-5 accuracy 80.4% on the validation set, using just the center crop. (Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy still.) This model was trained by Jeff Donahue @jeffdonahue ## License This model is released for unrestricted use.
whale@sea:/media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe$ ./build/install/bin/classification \ > /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/deploy.prototxt \ > /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \ > data/ilsvrc12/imagenet_mean.binaryproto \ > /media/whale/wsWin10/wsCaffe/model-zoo/VGG16/synset_words.txt \ > /media/whale/wsWin10/images/person/2.jpg labels_.size() = 1000 output_layer->channels() = 1000 ---------- Prediction for /media/whale/wsWin10/images/person/2.jpg ---------- 0.3411 - "n03676483 lipstick, lip rouge" 0.1024 - "n03325584 feather boa, boa" 0.0978 - "n07615774 ice lolly, lolly, lollipop, popsicle" 0.0734 - "n02786058 Band Aid" 0.0601 - "n04357314 sunscreen, sunblock, sun blocker"
翻译: 口红,口红
whale@sea:/media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe$ ./build/install/bin/classification \ > /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/deploy.prototxt \ > /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel \ > data/ilsvrc12/imagenet_mean.binaryproto \ > /media/whale/wsWin10/wsCaffe/model-zoo/VGG16/synset_words.txt \ > /media/whale/wsWin10/images/person/3.jpg labels_.size() = 1000 output_layer->channels() = 1000 ---------- Prediction for /media/whale/wsWin10/images/person/3.jpg ---------- 0.4030 - "n02883205 bow tie, bow-tie, bowtie" 0.3799 - "n04350905 suit, suit of clothes" 0.0473 - "n02865351 bolo tie, bolo, bola tie, bola" 0.0131 - "n04591157 Windsor tie" 0.0114 - "n02786058 Band Aid"
领结,领带,领结
_________________________________________________________________________________________________________________________________________________
每一个不曾起舞的日子,都是对生命的辜负。
But it is the same with man as with the tree. The more he seeks to rise into the height and light, the more vigorously do his roots struggle earthward, downward, into the dark, the deep - into evil.
其实人跟树是一样的,越是向往高处的阳光,它的根就越要伸向黑暗的地底。----尼采
每一个不曾起舞的日子,都是对生命的辜负。
But it is the same with man as with the tree. The more he seeks to rise into the height and light, the more vigorously do his roots struggle earthward, downward, into the dark, the deep - into evil.
其实人跟树是一样的,越是向往高处的阳光,它的根就越要伸向黑暗的地底。----尼采
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
· 25岁的心里话