keras----resnet-vgg-xception-inception
来源:
https://www.pyimagesearch.com/2017/03/20/imagenet-vggnet-resnet-inception-xception-keras/
classify_image.py
#encoding:utf8 import keras # import the necessary packages from keras.applications import ResNet50 from keras.applications import InceptionV3 from keras.applications import Xception # TensorFlow ONLY from keras.applications import VGG16 from keras.applications import VGG19 from keras.applications import imagenet_utils from keras.applications.inception_v3 import preprocess_input from keras.preprocessing.image import img_to_array from keras.preprocessing.image import load_img import numpy as np import argparse import cv2 print "hello, keras. " # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to the input image") ap.add_argument("-model", "--model", type=str, default="vgg16", help="name of pre-trained network to use") args = vars(ap.parse_args()) # define a dictionary that maps model names to their classes # inside Keras MODELS = { "vgg16": VGG16, "vgg19": VGG19, "inception": InceptionV3, "xception": Xception, # TensorFlow ONLY "resnet": ResNet50 } # esnure a valid model name was supplied via command line argument if args["model"] not in MODELS.keys(): raise AssertionError("The --model command line argument should " "be a key in the `MODELS` dictionary") # initialize the input image shape (224x224 pixels) along with # the pre-processing function (this might need to be changed # based on which model we use to classify our image) inputShape = (224, 224) preprocess = imagenet_utils.preprocess_input # if we are using the InceptionV3 or Xception networks, then we # need to set the input shape to (299x299) [rather than (224x224)] # and use a different image processing function if args["model"] in ("inception", "xception"): inputShape = (299, 299) preprocess = preprocess_input # Net, ResNet, Inception, and Xception with KerasPython # import the necessary packages # from keras.applications import ResNet50 # from keras.applications import InceptionV3 # from keras.applications import Xception # TensorFlow ONLY # from keras.applications import VGG16 # from keras.applications import VGG19 # from keras.applications import imagenet_utils # from keras.applications.inception_v3 import preprocess_input # from keras.preprocessing.image import img_to_array # from keras.preprocessing.image import load_img # import numpy as np # import argparse # import cv2 # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required=True, help="path to the input image") ap.add_argument("-model", "--model", type=str, default="vgg16", help="name of pre-trained network to use") args = vars(ap.parse_args()) # define a dictionary that maps model names to their classes # inside Keras MODELS = { "vgg16": VGG16, "vgg19": VGG19, "inception": InceptionV3, "xception": Xception, # TensorFlow ONLY "resnet": ResNet50 } # esnure a valid model name was supplied via command line argument if args["model"] not in MODELS.keys(): raise AssertionError("The --model command line argument should " "be a key in the `MODELS` dictionary") # initialize the input image shape (224x224 pixels) along with # the pre-processing function (this might need to be changed # based on which model we use to classify our image) inputShape = (224, 224) preprocess = imagenet_utils.preprocess_input # if we are using the InceptionV3 or Xception networks, then we # need to set the input shape to (299x299) [rather than (224x224)] # and use a different image processing function if args["model"] in ("inception", "xception"): inputShape = (299, 299) preprocess = preprocess_input # load our the network weights from disk (NOTE: if this is the # first time you are running this script for a given network, the # weights will need to be downloaded first -- depending on which # network you are using, the weights can be 90-575MB, so be # patient; the weights will be cached and subsequent runs of this # script will be *much* faster) print("[INFO] loading {}...".format(args["model"])) Network = MODELS[args["model"]] model = Network(weights="imagenet") # load our the network weights from disk (NOTE: if this is the # first time you are running this script for a given network, the # weights will need to be downloaded first -- depending on which # network you are using, the weights can be 90-575MB, so be # patient; the weights will be cached and subsequent runs of this # script will be *much* faster) print("[INFO] loading {}...".format(args["model"])) Network = MODELS[args["model"]] model = Network(weights="imagenet") # load the input image using the Keras helper utility while ensuring # the image is resized to `inputShape`, the required input dimensions # for the ImageNet pre-trained network print("[INFO] loading and pre-processing image...") image = load_img(args["image"], target_size=inputShape) image = img_to_array(image) # our input image is now represented as a NumPy array of shape # (inputShape[0], inputShape[1], 3) however we need to expand the # dimension by making the shape (1, inputShape[0], inputShape[1], 3) # so we can pass it through thenetwork image = np.expand_dims(image, axis=0) # pre-process the image using the appropriate function based on the # model that has been loaded (i.e., mean subtraction, scaling, etc.) image = preprocess(image) # classify the image print("[INFO] classifying image with '{}'...".format(args["model"])) preds = model.predict(image) P = imagenet_utils.decode_predictions(preds) # loop over the predictions and display the rank-5 predictions + # probabilities to our terminal for (i, (imagenetID, label, prob)) in enumerate(P[0]): print("{}. {}: {:.2f}%".format(i + 1, label, prob * 100)) # load the image via OpenCV, draw the top prediction on the image, # and display the image to our screen orig = cv2.imread(args["image"]) (imagenetID, label, prob) = P[0][0] cv2.putText(orig, "Label: {}, {:.2f}%".format(label, prob * 100), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 255), 2) cv2.imshow("Classification", orig) cv2.waitKey(0) print "finished . all. "
classfy.sh
python classify_image.py --image /home/sea/Downloads/images/a.jpg --model vgg19
1. tobacco_shop: 19.85%
2. confectionery: 12.88%
3. bakery: 11.10%
4. barbershop: 4.98%
5. restaurant: 4.29%
finished . all.
_________________________________________________________________________________________________________________________________________________
每一个不曾起舞的日子,都是对生命的辜负。
But it is the same with man as with the tree. The more he seeks to rise into the height and light, the more vigorously do his roots struggle earthward, downward, into the dark, the deep - into evil.
其实人跟树是一样的,越是向往高处的阳光,它的根就越要伸向黑暗的地底。----尼采
每一个不曾起舞的日子,都是对生命的辜负。
But it is the same with man as with the tree. The more he seeks to rise into the height and light, the more vigorously do his roots struggle earthward, downward, into the dark, the deep - into evil.
其实人跟树是一样的,越是向往高处的阳光,它的根就越要伸向黑暗的地底。----尼采
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
· 25岁的心里话