caffe学习--cifar10学习-ubuntu16.04-gtx650tiboost--1g--02
caffe学习--cifar10学习-ubuntu16.04-gtx650tiboost--1g--02
训练网络:
caffe train -solver examples/cifar10/cifar10_quick_solver.prototxt I1025 09:52:16.952167 7453 sgd_solver.cpp:105] Iteration 3700, lr = 0.001 I1025 09:52:18.843194 7453 solver.cpp:218] Iteration 3800 (52.8951 iter/s, 1.89054s/100 iters), loss = 0.593796 I1025 09:52:18.843243 7453 solver.cpp:237] Train net output #0: loss = 0.593796 (* 1 = 0.593796 loss) I1025 09:52:18.843261 7453 sgd_solver.cpp:105] Iteration 3800, lr = 0.001 I1025 09:52:20.776065 7453 solver.cpp:218] Iteration 3900 (51.7515 iter/s, 1.93231s/100 iters), loss = 0.713602 I1025 09:52:20.776106 7453 solver.cpp:237] Train net output #0: loss = 0.713602 (* 1 = 0.713602 loss) I1025 09:52:20.776114 7453 sgd_solver.cpp:105] Iteration 3900, lr = 0.001 I1025 09:52:22.677291 7458 data_layer.cpp:73] Restarting data prefetching from start. I1025 09:52:22.749538 7453 solver.cpp:447] Snapshotting to binary proto file examples/cifar10/cifar10_quick_iter_4000.caffemodel I1025 09:52:22.766818 7453 sgd_solver.cpp:273] Snapshotting solver state to binary proto file examples/cifar10/cifar10_quick_iter_4000.solverstate I1025 09:52:22.775292 7453 solver.cpp:310] Iteration 4000, loss = 0.643869 I1025 09:52:22.775322 7453 solver.cpp:330] Iteration 4000, Testing net (#0) I1025 09:52:23.483098 7460 data_layer.cpp:73] Restarting data prefetching from start. I1025 09:52:23.508436 7453 solver.cpp:397] Test net output #0: accuracy = 0.7157 I1025 09:52:23.508478 7453 solver.cpp:397] Test net output #1: loss = 0.847997 (* 1 = 0.847997 loss) I1025 09:52:23.508484 7453 solver.cpp:315] Optimization Done. I1025 09:52:23.508487 7453 caffe.cpp:259] Optimization Done.
测试时间的:
caffe time -model examples/mnist/lenet_train_test.prototxt -iterations 10
I1025 10:19:02.415710 8451 caffe.cpp:352] Use CPU.
I1025 10:19:02.623905 8451 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer mnist
I1025 10:19:02.623939 8451 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I1025 10:19:02.624037 8451 net.cpp:51] Initializing net from parameters:
name: "LeNet"
state {
phase: TRAIN
level: 0
stage: ""
}
... ... ... ...
I1025 10:19:02.848223 8451 net.cpp:198] ip1 needs backward computation. I1025 10:19:02.848227 8451 net.cpp:198] pool2 needs backward computation. I1025 10:19:02.848230 8451 net.cpp:198] conv2 needs backward computation. I1025 10:19:02.848234 8451 net.cpp:198] pool1 needs backward computation. I1025 10:19:02.848237 8451 net.cpp:198] conv1 needs backward computation. I1025 10:19:02.848242 8451 net.cpp:200] mnist does not need backward computation. I1025 10:19:02.848245 8451 net.cpp:242] This network produces output loss I1025 10:19:02.848253 8451 net.cpp:255] Network initialization done. I1025 10:19:02.848287 8451 caffe.cpp:360] Performing Forward I1025 10:19:02.879693 8451 caffe.cpp:365] Initial loss: 2.29607 I1025 10:19:02.879722 8451 caffe.cpp:366] Performing Backward I1025 10:19:02.923279 8451 caffe.cpp:374] *** Benchmark begins *** I1025 10:19:02.923300 8451 caffe.cpp:375] Testing for 10 iterations. I1025 10:19:02.994730 8451 caffe.cpp:403] Iteration: 1 forward-backward time: 71 ms. I1025 10:19:03.067307 8451 caffe.cpp:403] Iteration: 2 forward-backward time: 72 ms. I1025 10:19:03.139232 8451 caffe.cpp:403] Iteration: 3 forward-backward time: 71 ms. I1025 10:19:03.211033 8451 caffe.cpp:403] Iteration: 4 forward-backward time: 71 ms. I1025 10:19:03.283150 8451 caffe.cpp:403] Iteration: 5 forward-backward time: 72 ms. I1025 10:19:03.355051 8451 caffe.cpp:403] Iteration: 6 forward-backward time: 71 ms. I1025 10:19:03.430778 8451 caffe.cpp:403] Iteration: 7 forward-backward time: 75 ms. I1025 10:19:03.503176 8451 caffe.cpp:403] Iteration: 8 forward-backward time: 72 ms. I1025 10:19:03.575840 8451 caffe.cpp:403] Iteration: 9 forward-backward time: 72 ms. I1025 10:19:03.649318 8451 caffe.cpp:403] Iteration: 10 forward-backward time: 73 ms. I1025 10:19:03.649350 8451 caffe.cpp:406] Average time per layer: I1025 10:19:03.649353 8451 caffe.cpp:409] mnist forward: 0.0106 ms. I1025 10:19:03.649368 8451 caffe.cpp:412] mnist backward: 0.001 ms. I1025 10:19:03.649374 8451 caffe.cpp:409] conv1 forward: 7.967 ms. I1025 10:19:03.649387 8451 caffe.cpp:412] conv1 backward: 7.9797 ms. I1025 10:19:03.649391 8451 caffe.cpp:409] pool1 forward: 3.8953 ms. I1025 10:19:03.649394 8451 caffe.cpp:412] pool1 backward: 0.7797 ms. I1025 10:19:03.649397 8451 caffe.cpp:409] conv2 forward: 13.4244 ms. I1025 10:19:03.649401 8451 caffe.cpp:412] conv2 backward: 26.7948 ms. I1025 10:19:03.649405 8451 caffe.cpp:409] pool2 forward: 2.1919 ms. I1025 10:19:03.649410 8451 caffe.cpp:412] pool2 backward: 0.9304 ms. I1025 10:19:03.649412 8451 caffe.cpp:409] ip1 forward: 2.756 ms. I1025 10:19:03.649415 8451 caffe.cpp:412] ip1 backward: 5.2499 ms. I1025 10:19:03.649420 8451 caffe.cpp:409] relu1 forward: 0.0344 ms. I1025 10:19:03.649422 8451 caffe.cpp:412] relu1 backward: 0.0428 ms. I1025 10:19:03.649426 8451 caffe.cpp:409] ip2 forward: 0.1709 ms. I1025 10:19:03.649430 8451 caffe.cpp:412] ip2 backward: 0.2136 ms. I1025 10:19:03.649432 8451 caffe.cpp:409] loss forward: 0.0642 ms. I1025 10:19:03.649435 8451 caffe.cpp:412] loss backward: 0.0026 ms. I1025 10:19:03.649441 8451 caffe.cpp:417] Average Forward pass: 30.5448 ms. I1025 10:19:03.649446 8451 caffe.cpp:419] Average Backward pass: 42.0169 ms. I1025 10:19:03.649448 8451 caffe.cpp:421] Average Forward-Backward: 72.6 ms. I1025 10:19:03.649452 8451 caffe.cpp:423] Total Time: 726 ms. I1025 10:19:03.649456 8451 caffe.cpp:424] *** Benchmark ends ***
caffe time -model examples/mnist/lenet_train_test.prototxt -gpu 0
I1025 10:20:00.676383 8487 caffe.cpp:348] Use GPU with device ID 0
I1025 10:20:00.889961 8487 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer mnist
I1025 10:20:00.889991 8487 net.cpp:294] The NetState phase (0) differed from the phase (1) specified by a rule in layer accuracy
I1025 10:20:00.890086 8487 net.cpp:51] Initializing net from parameters:
name: "LeNet"
state {
phase: TRAIN
level: 0
stage: ""
}
... ... ... ...
I1025 10:20:01.122086 8487 caffe.cpp:360] Performing Forward I1025 10:20:01.124756 8487 caffe.cpp:365] Initial loss: 2.34191 I1025 10:20:01.124771 8487 caffe.cpp:366] Performing Backward I1025 10:20:01.125615 8487 caffe.cpp:374] *** Benchmark begins *** I1025 10:20:01.125625 8487 caffe.cpp:375] Testing for 50 iterations. I1025 10:20:01.138612 8487 caffe.cpp:403] Iteration: 1 forward-backward time: 8.47408 ms. I1025 10:20:01.146049 8487 caffe.cpp:403] Iteration: 2 forward-backward time: 7.38394 ms. I1025 10:20:01.155109 8487 caffe.cpp:403] Iteration: 3 forward-backward time: 9.0225 ms. I1025 10:20:01.161478 8487 caffe.cpp:403] Iteration: 4 forward-backward time: 6.32 ms. I1025 10:20:01.170373 8487 caffe.cpp:403] Iteration: 5 forward-backward time: 8.86355 ms. I1025 10:20:01.177851 8487 caffe.cpp:403] Iteration: 6 forward-backward time: 7.41622 ms. I1025 10:20:01.187093 8487 caffe.cpp:403] Iteration: 7 forward-backward time: 9.20099 ms. I1025 10:20:01.193529 8487 caffe.cpp:403] Iteration: 8 forward-backward time: 6.38976 ms. I1025 10:20:01.200045 8487 caffe.cpp:403] Iteration: 9 forward-backward time: 6.47888 ms. I1025 10:20:01.210321 8487 caffe.cpp:403] Iteration: 10 forward-backward time: 10.2353 ms. I1025 10:20:01.217547 8487 caffe.cpp:403] Iteration: 11 forward-backward time: 7.18 ms. I1025 10:20:01.225344 8487 caffe.cpp:403] Iteration: 12 forward-backward time: 7.73363 ms. I1025 10:20:01.232453 8487 caffe.cpp:403] Iteration: 13 forward-backward time: 7.06461 ms. I1025 10:20:01.240022 8487 caffe.cpp:403] Iteration: 14 forward-backward time: 7.532 ms. I1025 10:20:01.249349 8487 caffe.cpp:403] Iteration: 15 forward-backward time: 9.27904 ms. I1025 10:20:01.249379 8487 blocking_queue.cpp:49] Waiting for data I1025 10:20:01.268914 8487 caffe.cpp:403] Iteration: 16 forward-backward time: 19.5232 ms. I1025 10:20:01.279377 8487 caffe.cpp:403] Iteration: 17 forward-backward time: 10.4125 ms. I1025 10:20:01.286734 8487 caffe.cpp:403] Iteration: 18 forward-backward time: 7.30182 ms. I1025 10:20:01.294451 8487 caffe.cpp:403] Iteration: 19 forward-backward time: 7.67226 ms. I1025 10:20:01.302402 8487 caffe.cpp:403] Iteration: 20 forward-backward time: 7.89741 ms. I1025 10:20:01.310400 8487 caffe.cpp:403] Iteration: 21 forward-backward time: 7.96928 ms. I1025 10:20:01.317606 8487 caffe.cpp:403] Iteration: 22 forward-backward time: 7.16723 ms. I1025 10:20:01.323557 8487 caffe.cpp:403] Iteration: 23 forward-backward time: 5.92131 ms. I1025 10:20:01.330713 8487 caffe.cpp:403] Iteration: 24 forward-backward time: 7.10467 ms. I1025 10:20:01.336655 8487 caffe.cpp:403] Iteration: 25 forward-backward time: 5.90749 ms. I1025 10:20:01.345613 8487 caffe.cpp:403] Iteration: 26 forward-backward time: 8.92973 ms. I1025 10:20:01.351608 8487 caffe.cpp:403] Iteration: 27 forward-backward time: 5.95821 ms. I1025 10:20:01.357544 8487 caffe.cpp:403] Iteration: 28 forward-backward time: 5.90122 ms. I1025 10:20:01.366344 8487 caffe.cpp:403] Iteration: 29 forward-backward time: 8.72832 ms. I1025 10:20:01.372421 8487 caffe.cpp:403] Iteration: 30 forward-backward time: 6.03226 ms. I1025 10:20:01.382807 8487 caffe.cpp:403] Iteration: 31 forward-backward time: 10.3558 ms. I1025 10:20:01.388767 8487 caffe.cpp:403] Iteration: 32 forward-backward time: 5.92176 ms. I1025 10:20:01.397477 8487 caffe.cpp:403] Iteration: 33 forward-backward time: 8.67101 ms. I1025 10:20:01.403537 8487 caffe.cpp:403] Iteration: 34 forward-backward time: 6.00432 ms. I1025 10:20:01.412868 8487 caffe.cpp:403] Iteration: 35 forward-backward time: 9.30355 ms. I1025 10:20:01.419735 8487 caffe.cpp:403] Iteration: 36 forward-backward time: 6.81789 ms. I1025 10:20:01.426568 8487 caffe.cpp:403] Iteration: 37 forward-backward time: 6.79034 ms. I1025 10:20:01.434139 8487 caffe.cpp:403] Iteration: 38 forward-backward time: 7.51936 ms. I1025 10:20:01.441957 8487 caffe.cpp:403] Iteration: 39 forward-backward time: 7.77027 ms. I1025 10:20:01.449676 8487 caffe.cpp:403] Iteration: 40 forward-backward time: 7.67699 ms. I1025 10:20:01.455268 8487 caffe.cpp:403] Iteration: 41 forward-backward time: 5.55248 ms. I1025 10:20:01.463119 8487 caffe.cpp:403] Iteration: 42 forward-backward time: 7.81456 ms. I1025 10:20:01.469161 8487 caffe.cpp:403] Iteration: 43 forward-backward time: 6.00304 ms. I1025 10:20:01.477457 8487 caffe.cpp:403] Iteration: 44 forward-backward time: 8.24778 ms. I1025 10:20:01.483078 8487 caffe.cpp:403] Iteration: 45 forward-backward time: 5.57971 ms. I1025 10:20:01.489542 8487 caffe.cpp:403] Iteration: 46 forward-backward time: 6.42477 ms. I1025 10:20:01.497421 8487 caffe.cpp:403] Iteration: 47 forward-backward time: 7.19514 ms. I1025 10:20:01.503559 8487 caffe.cpp:403] Iteration: 48 forward-backward time: 6.0952 ms. I1025 10:20:01.512117 8487 caffe.cpp:403] Iteration: 49 forward-backward time: 8.49587 ms. I1025 10:20:01.517725 8487 caffe.cpp:403] Iteration: 50 forward-backward time: 5.55443 ms. I1025 10:20:01.517742 8487 caffe.cpp:406] Average time per layer: I1025 10:20:01.517746 8487 caffe.cpp:409] mnist forward: 0.251048 ms. I1025 10:20:01.517750 8487 caffe.cpp:412] mnist backward: 0.00134592 ms. I1025 10:20:01.517755 8487 caffe.cpp:409] conv1 forward: 0.49879 ms. I1025 10:20:01.517771 8487 caffe.cpp:412] conv1 backward: 0.647739 ms. I1025 10:20:01.517773 8487 caffe.cpp:409] pool1 forward: 0.165693 ms. I1025 10:20:01.517779 8487 caffe.cpp:412] pool1 backward: 0.648113 ms. I1025 10:20:01.517783 8487 caffe.cpp:409] conv2 forward: 0.398481 ms. I1025 10:20:01.517786 8487 caffe.cpp:412] conv2 backward: 3.08044 ms. I1025 10:20:01.517791 8487 caffe.cpp:409] pool2 forward: 0.0440877 ms. I1025 10:20:01.517794 8487 caffe.cpp:412] pool2 backward: 0.206023 ms. I1025 10:20:01.517797 8487 caffe.cpp:409] ip1 forward: 0.338913 ms. I1025 10:20:01.517801 8487 caffe.cpp:412] ip1 backward: 0.285026 ms. I1025 10:20:01.517804 8487 caffe.cpp:409] relu1 forward: 0.0160883 ms. I1025 10:20:01.517808 8487 caffe.cpp:412] relu1 backward: 0.0158157 ms. I1025 10:20:01.517812 8487 caffe.cpp:409] ip2 forward: 0.0488646 ms. I1025 10:20:01.517817 8487 caffe.cpp:412] ip2 backward: 0.0671059 ms. I1025 10:20:01.517820 8487 caffe.cpp:409] loss forward: 0.12852 ms. I1025 10:20:01.517824 8487 caffe.cpp:412] loss backward: 0.0384621 ms. I1025 10:20:01.517832 8487 caffe.cpp:417] Average Forward pass: 2.17016 ms. I1025 10:20:01.517837 8487 caffe.cpp:419] Average Backward pass: 5.51324 ms. I1025 10:20:01.517843 8487 caffe.cpp:421] Average Forward-Backward: 7.75216 ms. I1025 10:20:01.517848 8487 caffe.cpp:423] Total Time: 387.608 ms. I1025 10:20:01.517853 8487 caffe.cpp:424] *** Benchmark ends ***
caffe time -model examples/mnist/lenet_train_test.prototxt -weights examples/mnist/lenet_iter_4000.caffemodel -gpu 0 -iterations 10 I1025 10:22:48.857121 8553 net.cpp:380] loss -> loss I1025 10:22:48.857132 8553 layer_factory.hpp:77] Creating layer loss I1025 10:22:48.857488 8553 net.cpp:122] Setting up loss I1025 10:22:48.857498 8553 net.cpp:129] Top shape: (1) I1025 10:22:48.857511 8553 net.cpp:132] with loss weight 1 I1025 10:22:48.857544 8553 net.cpp:137] Memory required for data: 5169924 I1025 10:22:48.857556 8553 net.cpp:198] loss needs backward computation. I1025 10:22:48.857563 8553 net.cpp:198] ip2 needs backward computation. I1025 10:22:48.857575 8553 net.cpp:198] relu1 needs backward computation. I1025 10:22:48.857578 8553 net.cpp:198] ip1 needs backward computation. I1025 10:22:48.857583 8553 net.cpp:198] pool2 needs backward computation. I1025 10:22:48.857594 8553 net.cpp:198] conv2 needs backward computation. I1025 10:22:48.857599 8553 net.cpp:198] pool1 needs backward computation. I1025 10:22:48.857601 8553 net.cpp:198] conv1 needs backward computation. I1025 10:22:48.857616 8553 net.cpp:200] mnist does not need backward computation. I1025 10:22:48.857620 8553 net.cpp:242] This network produces output loss I1025 10:22:48.857626 8553 net.cpp:255] Network initialization done. I1025 10:22:48.857663 8553 caffe.cpp:360] Performing Forward I1025 10:22:48.860333 8553 caffe.cpp:365] Initial loss: 2.31537 I1025 10:22:48.860348 8553 caffe.cpp:366] Performing Backward I1025 10:22:48.861186 8553 caffe.cpp:374] *** Benchmark begins *** I1025 10:22:48.861196 8553 caffe.cpp:375] Testing for 10 iterations. I1025 10:22:48.874462 8553 caffe.cpp:403] Iteration: 1 forward-backward time: 8.88995 ms. I1025 10:22:48.885459 8553 caffe.cpp:403] Iteration: 2 forward-backward time: 10.9423 ms. I1025 10:22:48.894951 8553 caffe.cpp:403] Iteration: 3 forward-backward time: 9.44522 ms. I1025 10:22:48.902019 8553 caffe.cpp:403] Iteration: 4 forward-backward time: 7.01862 ms. I1025 10:22:48.910653 8553 caffe.cpp:403] Iteration: 5 forward-backward time: 8.59363 ms. I1025 10:22:48.922940 8553 caffe.cpp:403] Iteration: 6 forward-backward time: 12.2141 ms. I1025 10:22:48.930162 8553 caffe.cpp:403] Iteration: 7 forward-backward time: 7.18058 ms. I1025 10:22:48.938832 8553 caffe.cpp:403] Iteration: 8 forward-backward time: 8.6343 ms. I1025 10:22:48.945971 8553 caffe.cpp:403] Iteration: 9 forward-backward time: 7.09872 ms. I1025 10:22:48.958122 8553 caffe.cpp:403] Iteration: 10 forward-backward time: 12.1039 ms. I1025 10:22:48.958153 8553 caffe.cpp:406] Average time per layer: I1025 10:22:48.958156 8553 caffe.cpp:409] mnist forward: 0.0056096 ms. I1025 10:22:48.958160 8553 caffe.cpp:412] mnist backward: 0.001536 ms. I1025 10:22:48.958164 8553 caffe.cpp:409] conv1 forward: 0.498285 ms. I1025 10:22:48.958168 8553 caffe.cpp:412] conv1 backward: 0.676925 ms. I1025 10:22:48.958173 8553 caffe.cpp:409] pool1 forward: 0.162208 ms. I1025 10:22:48.958176 8553 caffe.cpp:412] pool1 backward: 0.686502 ms. I1025 10:22:48.958179 8553 caffe.cpp:409] conv2 forward: 0.418938 ms. I1025 10:22:48.958184 8553 caffe.cpp:412] conv2 backward: 3.10982 ms. I1025 10:22:48.958186 8553 caffe.cpp:409] pool2 forward: 0.0446272 ms. I1025 10:22:48.958190 8553 caffe.cpp:412] pool2 backward: 0.185696 ms. I1025 10:22:48.958194 8553 caffe.cpp:409] ip1 forward: 0.295738 ms. I1025 10:22:48.958199 8553 caffe.cpp:412] ip1 backward: 0.285965 ms. I1025 10:22:48.958204 8553 caffe.cpp:409] relu1 forward: 0.0179744 ms. I1025 10:22:48.958210 8553 caffe.cpp:412] relu1 backward: 0.018272 ms. I1025 10:22:48.958216 8553 caffe.cpp:409] ip2 forward: 0.0504448 ms. I1025 10:22:48.958221 8553 caffe.cpp:412] ip2 backward: 0.0691424 ms. I1025 10:22:48.958226 8553 caffe.cpp:409] loss forward: 0.118474 ms. I1025 10:22:48.958232 8553 caffe.cpp:412] loss backward: 0.0267104 ms. I1025 10:22:48.958245 8553 caffe.cpp:417] Average Forward pass: 1.88931 ms. I1025 10:22:48.958252 8553 caffe.cpp:419] Average Backward pass: 7.30781 ms. I1025 10:22:48.958264 8553 caffe.cpp:421] Average Forward-Backward: 9.26613 ms. I1025 10:22:48.958271 8553 caffe.cpp:423] Total Time: 92.6613 ms.I1025 10:22:48.958274 8553 caffe.cpp:424] *** Benchmark ends ***
分类:
分类的函数classification 带有五个参数: 分别是部署文件,权重文件,平均数值转换文件,标签文件,目标图像文件。
其中,标签文件的行数应当等同于分类输出的维数,否则会报维度不匹配的错误(我经历过,所以知道--尽管这是一个很小的问题,但是程序就是这么死板,多一个空行就报错)。
classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ./examples/images/cat.jpg
ples/images/cat.jpgamples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ./exam ---------- Prediction for ./examples/images/cat.jpg ---------- 0.3778 - "6 dog" 0.3362 - "5 deer" 0.2370 - "4 cat" 0.0264 - "8 horse" 0.0117 - "3 bird"
这里要注意,不是用解决方案配置--solver.prototxt , 也不是用训练测试配置文件--test.prototxt, 而是用部署配置文件 deploy.txt 。 就是类似于cifar10_quick.prototxt , cifar10_full.prototxt, 以及 lenet.portotxt 这些配置文件。
否则会报错: Check failed: net_->num_inputs() == 1 (0 vs. 1) Network should have exactly one input.
多个图像分类:
classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/1.jpg classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/2.jpg classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/3.jpg classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/4.jpg classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/5.jpg classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/6.jpg classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/7.jpg classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/8.jpg sea@sea-X550JK:~/caffe$ sea@sea-X550JK:~/caffe$ sea@sea-X550JK:~/caffe$ sea@sea-X550JK:~/caffe$ sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/1.jpg ---------- Prediction for /home/sea/Downloads/images/cat/1.jpg ---------- 0.3888 - "4 cat" 0.2216 - "9 ship" 0.1906 - "1 airplane" 0.0695 - "6 dog" 0.0500 - "5 deer" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/2.jpg ---------- Prediction for /home/sea/Downloads/images/cat/2.jpg ---------- 0.9202 - "1 airplane" 0.0613 - "3 bird" 0.0078 - "4 cat" 0.0053 - "10 truck" 0.0018 - "2 automobile" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/3.jpg ---------- Prediction for /home/sea/Downloads/images/cat/3.jpg ---------- 0.6837 - "9 ship" 0.0984 - "7 frog" 0.0889 - "10 truck" 0.0602 - "5 deer" 0.0439 - "4 cat" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/4.jpg ---------- Prediction for /home/sea/Downloads/images/cat/4.jpg ---------- 0.8204 - "8 horse" 0.0572 - "4 cat" 0.0358 - "1 airplane" 0.0277 - "9 ship" 0.0265 - "6 dog" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/5.jpg ---------- Prediction for /home/sea/Downloads/images/cat/5.jpg ---------- 0.9156 - "1 airplane" 0.0441 - "10 truck" 0.0159 - "2 automobile" 0.0107 - "9 ship" 0.0078 - "3 bird" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/6.jpg ---------- Prediction for /home/sea/Downloads/images/cat/6.jpg ---------- 0.5397 - "4 cat" 0.4239 - "6 dog" 0.0123 - "5 deer" 0.0117 - "8 horse" 0.0077 - "7 frog" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/7.jpg ---------- Prediction for /home/sea/Downloads/images/cat/7.jpg ---------- 0.7133 - "10 truck" 0.0891 - "8 horse" 0.0848 - "2 automobile" 0.0702 - "1 airplane" 0.0314 - "9 ship" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_quick.prototxt ./examples/cifar10/cifar10_quick_iter_4000.caffemodel ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/8.jpg ---------- Prediction for /home/sea/Downloads/images/cat/8.jpg ---------- 0.3767 - "5 deer" 0.3018 - "4 cat" 0.1462 - "10 truck" 0.1394 - "6 dog" 0.0260 - "7 frog"
快速模型和权重./examples/cifar10/cifar10_quick_iter_4000.caffemodel的调研:
1. 从上面看到8张图错误6张,正确2张。 正确率25%。 这是泛化能力。
2. 自身的测试:
训练集合的精确比率为0.7142,
损失为0.865448
caffe test -model ./examples/cifar10/cifar10_quick_train_test.prototxt -weights ./examples/cifar10/cifar10_quick_iter_4000.caffemodel -gpu 0 I1025 11:36:51.564245 10790 caffe.cpp:313] Batch 44, loss = 0.914596 I1025 11:36:51.570861 10790 caffe.cpp:313] Batch 45, accuracy = 0.69 I1025 11:36:51.570873 10790 caffe.cpp:313] Batch 45, loss = 0.803738 I1025 11:36:51.578325 10790 caffe.cpp:313] Batch 46, accuracy = 0.7 I1025 11:36:51.578337 10790 caffe.cpp:313] Batch 46, loss = 0.829137 I1025 11:36:51.585026 10790 caffe.cpp:313] Batch 47, accuracy = 0.69 I1025 11:36:51.585041 10790 caffe.cpp:313] Batch 47, loss = 0.865979 I1025 11:36:51.594761 10790 caffe.cpp:313] Batch 48, accuracy = 0.74 I1025 11:36:51.594782 10790 caffe.cpp:313] Batch 48, loss = 0.708391 I1025 11:36:51.603091 10790 caffe.cpp:313] Batch 49, accuracy = 0.7 I1025 11:36:51.603111 10790 caffe.cpp:313] Batch 49, loss = 0.946827 I1025 11:36:51.603126 10790 caffe.cpp:318] Loss: 0.865448 I1025 11:36:51.603137 10790 caffe.cpp:330] accuracy = 0.7142 I1025 11:36:51.603157 10790 caffe.cpp:330] loss = 0.865448 (* 1 = 0.865448 loss)
3. 时间测试:
前后向的时间为23毫秒。
总时间长度为1.1秒。
caffe time -model ./examples/cifar10/cifar10_quick_train_test.prototxt -weights ./examples/cifar10/cifar10_quick_iter_4000.caffemodel -gpu 0 I1025 11:38:16.669402 10825 caffe.cpp:403] Iteration: 45 forward-backward time: 19.4118 ms. I1025 11:38:16.694664 10825 caffe.cpp:403] Iteration: 46 forward-backward time: 25.2144 ms. I1025 11:38:16.713924 10825 caffe.cpp:403] Iteration: 47 forward-backward time: 19.2045 ms. I1025 11:38:16.738245 10825 caffe.cpp:403] Iteration: 48 forward-backward time: 24.2684 ms. I1025 11:38:16.763664 10825 caffe.cpp:403] Iteration: 49 forward-backward time: 25.3646 ms. I1025 11:38:16.782811 10825 caffe.cpp:403] Iteration: 50 forward-backward time: 19.09 ms. I1025 11:38:16.782827 10825 caffe.cpp:406] Average time per layer: I1025 11:38:16.782841 10825 caffe.cpp:409] cifar forward: 0.00857536 ms. I1025 11:38:16.782846 10825 caffe.cpp:412] cifar backward: 0.00139584 ms. I1025 11:38:16.782860 10825 caffe.cpp:409] conv1 forward: 2.14007 ms. I1025 11:38:16.782865 10825 caffe.cpp:412] conv1 backward: 2.03241 ms. I1025 11:38:16.782867 10825 caffe.cpp:409] pool1 forward: 0.93871 ms. I1025 11:38:16.782871 10825 caffe.cpp:412] pool1 backward: 3.76713 ms. I1025 11:38:16.782874 10825 caffe.cpp:409] relu1 forward: 0.248064 ms. I1025 11:38:16.782878 10825 caffe.cpp:412] relu1 backward: 0.376273 ms. I1025 11:38:16.782882 10825 caffe.cpp:409] conv2 forward: 2.1273 ms. I1025 11:38:16.782886 10825 caffe.cpp:412] conv2 backward: 4.11786 ms. I1025 11:38:16.782889 10825 caffe.cpp:409] relu2 forward: 0.218598 ms. I1025 11:38:16.782892 10825 caffe.cpp:412] relu2 backward: 0.385136 ms. I1025 11:38:16.782937 10825 caffe.cpp:409] pool2 forward: 0.221261 ms. I1025 11:38:16.782939 10825 caffe.cpp:412] pool2 backward: 0.534493 ms. I1025 11:38:16.782943 10825 caffe.cpp:409] conv3 forward: 0.877706 ms. I1025 11:38:16.782955 10825 caffe.cpp:412] conv3 backward: 1.8379 ms. I1025 11:38:16.782958 10825 caffe.cpp:409] relu3 forward: 0.0326285 ms. I1025 11:38:16.782961 10825 caffe.cpp:412] relu3 backward: 0.132778 ms. I1025 11:38:16.782975 10825 caffe.cpp:409] pool3 forward: 0.0975443 ms. I1025 11:38:16.782979 10825 caffe.cpp:412] pool3 backward: 0.281843 ms. I1025 11:38:16.782982 10825 caffe.cpp:409] ip1 forward: 0.0641299 ms. I1025 11:38:16.782986 10825 caffe.cpp:412] ip1 backward: 0.100058 ms. I1025 11:38:16.782990 10825 caffe.cpp:409] ip2 forward: 0.0288877 ms. I1025 11:38:16.782994 10825 caffe.cpp:412] ip2 backward: 0.0482771 ms. I1025 11:38:16.782996 10825 caffe.cpp:409] loss forward: 0.121826 ms. I1025 11:38:16.783000 10825 caffe.cpp:412] loss backward: 0.0234682 ms. I1025 11:38:16.783010 10825 caffe.cpp:417] Average Forward pass: 8.29833 ms. I1025 11:38:16.783015 10825 caffe.cpp:419] Average Backward pass: 14.7445 ms. I1025 11:38:16.783021 10825 caffe.cpp:421] Average Forward-Backward: 23.1076 ms. I1025 11:38:16.783026 10825 caffe.cpp:423] Total Time: 1155.38 ms. I1025 11:38:16.783030 10825 caffe.cpp:424] *** Benchmark ends ***
权重cifar10_full_iter_70000.caffemodel.h5调研:
1. 自身测试:
caffe test -model ./examples/cifar10/cifar10_full_train_test.prototxt -weights ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 -gpu 0 sea@sea-X550JK:~/caffe$ caffe test -model ./examples/cifar10/cifar10_full_train_test.prototxt -weights ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 -gpu 0 I1025 14:23:51.542804 18169 caffe.cpp:275] Use GPU with device ID 0 I1025 14:23:51.546751 18169 caffe.cpp:279] GPU device name: GeForce GTX 850M I1025 14:23:51.713084 18169 net.cpp:294] The NetState phase (1) differed from the phase (0) specified by a rule in layer cifar I1025 14:23:51.713248 18169 net.cpp:51] Initializing net from parameters: name: "CIFAR10_full" state { phase: TEST level: 0 stage: "" } ... ... ... ... ... I1025 14:23:52.634953 18169 caffe.cpp:313] Batch 39, accuracy = 0.85 I1025 14:23:52.634968 18169 caffe.cpp:313] Batch 39, loss = 0.455226 I1025 14:23:52.650311 18169 caffe.cpp:313] Batch 40, accuracy = 0.82 I1025 14:23:52.650331 18169 caffe.cpp:313] Batch 40, loss = 0.516594 I1025 14:23:52.666031 18169 caffe.cpp:313] Batch 41, accuracy = 0.86 I1025 14:23:52.666046 18169 caffe.cpp:313] Batch 41, loss = 0.559571 I1025 14:23:52.680202 18169 caffe.cpp:313] Batch 42, accuracy = 0.87 I1025 14:23:52.680218 18169 caffe.cpp:313] Batch 42, loss = 0.312487 I1025 14:23:52.696849 18169 caffe.cpp:313] Batch 43, accuracy = 0.8 I1025 14:23:52.696868 18169 caffe.cpp:313] Batch 43, loss = 0.579208 I1025 14:23:52.711607 18169 caffe.cpp:313] Batch 44, accuracy = 0.85 I1025 14:23:52.711624 18169 caffe.cpp:313] Batch 44, loss = 0.489596 I1025 14:23:52.729244 18169 caffe.cpp:313] Batch 45, accuracy = 0.73 I1025 14:23:52.729265 18169 caffe.cpp:313] Batch 45, loss = 0.698871 I1025 14:23:52.744884 18169 caffe.cpp:313] Batch 46, accuracy = 0.8 I1025 14:23:52.744913 18169 caffe.cpp:313] Batch 46, loss = 0.586852 I1025 14:23:52.764186 18169 caffe.cpp:313] Batch 47, accuracy = 0.79 I1025 14:23:52.764214 18169 caffe.cpp:313] Batch 47, loss = 0.564458 I1025 14:23:52.778921 18169 caffe.cpp:313] Batch 48, accuracy = 0.87 I1025 14:23:52.778936 18169 caffe.cpp:313] Batch 48, loss = 0.434929 I1025 14:23:52.795367 18169 caffe.cpp:313] Batch 49, accuracy = 0.79 I1025 14:23:52.795387 18169 caffe.cpp:313] Batch 49, loss = 0.606755 I1025 14:23:52.795390 18169 caffe.cpp:318] Loss: 0.534957 I1025 14:23:52.795420 18169 caffe.cpp:330] accuracy = 0.8154 I1025 14:23:52.795433 18169 caffe.cpp:330] loss = 0.534957 (* 1 = 0.534957 loss)
2. 自身时间测试:
caffe time -model ./examples/cifar10/cifar10_full_train_test.prototxt -weights ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 -gpu 0 I1025 14:25:22.766800 18229 caffe.cpp:403] Iteration: 29 forward-backward time: 64.5375 ms. I1025 14:25:22.829309 18229 caffe.cpp:403] Iteration: 30 forward-backward time: 62.4488 ms. I1025 14:25:22.896539 18229 caffe.cpp:403] Iteration: 31 forward-backward time: 67.1617 ms. I1025 14:25:22.962805 18229 caffe.cpp:403] Iteration: 32 forward-backward time: 66.2025 ms. I1025 14:25:23.026084 18229 caffe.cpp:403] Iteration: 33 forward-backward time: 63.2123 ms. I1025 14:25:23.092511 18229 caffe.cpp:403] Iteration: 34 forward-backward time: 66.3596 ms. I1025 14:25:23.162700 18229 caffe.cpp:403] Iteration: 35 forward-backward time: 70.1179 ms. I1025 14:25:23.227666 18229 caffe.cpp:403] Iteration: 36 forward-backward time: 64.8958 ms. I1025 14:25:23.291137 18229 caffe.cpp:403] Iteration: 37 forward-backward time: 63.4053 ms. I1025 14:25:23.359288 18229 caffe.cpp:403] Iteration: 38 forward-backward time: 68.0804 ms. I1025 14:25:23.425307 18229 caffe.cpp:403] Iteration: 39 forward-backward time: 65.949 ms. I1025 14:25:23.489913 18229 caffe.cpp:403] Iteration: 40 forward-backward time: 64.5361 ms. I1025 14:25:23.558320 18229 caffe.cpp:403] Iteration: 41 forward-backward time: 68.3355 ms. I1025 14:25:23.622004 18229 caffe.cpp:403] Iteration: 42 forward-backward time: 63.6237 ms. I1025 14:25:23.688843 18229 caffe.cpp:403] Iteration: 43 forward-backward time: 66.7711 ms. I1025 14:25:23.759383 18229 caffe.cpp:403] Iteration: 44 forward-backward time: 70.4762 ms. I1025 14:25:23.826133 18229 caffe.cpp:403] Iteration: 45 forward-backward time: 66.6718 ms. I1025 14:25:23.889969 18229 caffe.cpp:403] Iteration: 46 forward-backward time: 63.77 ms. I1025 14:25:23.957020 18229 caffe.cpp:403] Iteration: 47 forward-backward time: 66.9768 ms. I1025 14:25:24.020988 18229 caffe.cpp:403] Iteration: 48 forward-backward time: 63.8991 ms. I1025 14:25:24.082286 18229 caffe.cpp:403] Iteration: 49 forward-backward time: 61.23 ms. I1025 14:25:24.150640 18229 caffe.cpp:403] Iteration: 50 forward-backward time: 68.2817 ms. I1025 14:25:24.150679 18229 caffe.cpp:406] Average time per layer: I1025 14:25:24.150682 18229 caffe.cpp:409] cifar forward: 0.0128384 ms. I1025 14:25:24.150688 18229 caffe.cpp:412] cifar backward: 0.0012096 ms. I1025 14:25:24.150703 18229 caffe.cpp:409] conv1 forward: 1.97368 ms. I1025 14:25:24.150707 18229 caffe.cpp:412] conv1 backward: 1.77903 ms. I1025 14:25:24.150738 18229 caffe.cpp:409] pool1 forward: 0.794051 ms. I1025 14:25:24.150743 18229 caffe.cpp:412] pool1 backward: 3.74093 ms. I1025 14:25:24.150745 18229 caffe.cpp:409] relu1 forward: 0.249007 ms. I1025 14:25:24.150758 18229 caffe.cpp:412] relu1 backward: 0.421526 ms. I1025 14:25:24.150761 18229 caffe.cpp:409] norm1 forward: 6.559 ms. I1025 14:25:24.150764 18229 caffe.cpp:412] norm1 backward: 34.0349 ms. I1025 14:25:24.150777 18229 caffe.cpp:409] conv2 forward: 1.95953 ms. I1025 14:25:24.150781 18229 caffe.cpp:412] conv2 backward: 3.82123 ms. I1025 14:25:24.150795 18229 caffe.cpp:409] relu2 forward: 0.214522 ms. I1025 14:25:24.150799 18229 caffe.cpp:412] relu2 backward: 0.383297 ms. I1025 14:25:24.150802 18229 caffe.cpp:409] pool2 forward: 0.211263 ms. I1025 14:25:24.150805 18229 caffe.cpp:412] pool2 backward: 0.516095 ms. I1025 14:25:24.150810 18229 caffe.cpp:409] norm2 forward: 1.18516 ms. I1025 14:25:24.150812 18229 caffe.cpp:412] norm2 backward: 2.44542 ms. I1025 14:25:24.150816 18229 caffe.cpp:409] conv3 forward: 0.861409 ms. I1025 14:25:24.150820 18229 caffe.cpp:412] conv3 backward: 1.59151 ms. I1025 14:25:24.150821 18229 caffe.cpp:409] relu3 forward: 0.030391 ms. I1025 14:25:24.150825 18229 caffe.cpp:412] relu3 backward: 0.140596 ms. I1025 14:25:24.150828 18229 caffe.cpp:409] pool3 forward: 0.0932717 ms. I1025 14:25:24.150832 18229 caffe.cpp:412] pool3 backward: 0.270544 ms. I1025 14:25:24.150835 18229 caffe.cpp:409] ip1 forward: 0.0853786 ms. I1025 14:25:24.150840 18229 caffe.cpp:412] ip1 backward: 0.0700339 ms. I1025 14:25:24.150846 18229 caffe.cpp:409] loss forward: 0.116995 ms. I1025 14:25:24.150852 18229 caffe.cpp:412] loss backward: 0.0239635 ms. I1025 14:25:24.150864 18229 caffe.cpp:417] Average Forward pass: 15.1733 ms. I1025 14:25:24.150871 18229 caffe.cpp:419] Average Backward pass: 50.7023 ms. I1025 14:25:24.150880 18229 caffe.cpp:421] Average Forward-Backward: 65.9452 ms. I1025 14:25:24.150887 18229 caffe.cpp:423] Total Time: 3297.26 ms. I1025 14:25:24.150894 18229 caffe.cpp:424] *** Benchmark ends ***
3. 泛化测试:
classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/1.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/2.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/3.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/4.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/5.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/6.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/7.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/8.jpg
sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/1.jpg ---------- Prediction for /home/sea/Downloads/images/cat/1.jpg ---------- 0.4068 - "1 airplane" 0.1793 - "5 deer" 0.1201 - "9 ship" 0.0827 - "4 cat" 0.0691 - "3 bird" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/2.jpg ---------- Prediction for /home/sea/Downloads/images/cat/2.jpg ---------- 0.7290 - "1 airplane" 0.1371 - "3 bird" 0.0438 - "10 truck" 0.0267 - "8 horse" 0.0254 - "4 cat" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/3.jpg ---------- Prediction for /home/sea/Downloads/images/cat/3.jpg ---------- 0.2912 - "9 ship" 0.2754 - "7 frog" 0.2670 - "1 airplane" 0.0595 - "10 truck" 0.0435 - "3 bird" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/4.jpg ---------- Prediction for /home/sea/Downloads/images/cat/4.jpg ---------- 0.3902 - "4 cat" 0.3171 - "10 truck" 0.0842 - "9 ship" 0.0800 - "1 airplane" 0.0374 - "6 dog" sea@sea-X550JK:~/caffe$ sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/5.jpg ---------- Prediction for /home/sea/Downloads/images/cat/5.jpg ---------- 0.9190 - "1 airplane" 0.0461 - "10 truck" 0.0258 - "9 ship" 0.0027 - "2 automobile" 0.0023 - "3 bird" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/6.jpg ---------- Prediction for /home/sea/Downloads/images/cat/6.jpg ---------- 0.7168 - "4 cat" 0.0823 - "7 frog" 0.0545 - "8 horse" 0.0464 - "10 truck" 0.0419 - "9 ship" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/7.jpg ---------- Prediction for /home/sea/Downloads/images/cat/7.jpg ---------- 0.9785 - "10 truck" 0.0169 - "1 airplane" 0.0019 - "4 cat" 0.0015 - "9 ship" 0.0007 - "2 automobile" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/cat/8.jpg ---------- Prediction for /home/sea/Downloads/images/cat/8.jpg ---------- 0.4046 - "7 frog" 0.3872 - "5 deer" 0.1262 - "4 cat" 0.0483 - "10 truck" 0.0226 - "3 bird"
还是25%的正确比率。尴尬。
classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/1.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/2.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/3.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/4.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/5.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/6.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/7.jpg classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/8.jpg sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/1.jpg ---------- Prediction for /home/sea/Downloads/images/horse/1.jpg ---------- 0.6260 - "1 airplane" 0.3320 - "10 truck" 0.0188 - "2 automobile" 0.0123 - "8 horse" 0.0093 - "3 bird" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/2.jpg ---------- Prediction for /home/sea/Downloads/images/horse/2.jpg ---------- 0.4816 - "10 truck" 0.3417 - "1 airplane" 0.0700 - "3 bird" 0.0438 - "8 horse" 0.0344 - "2 automobile" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/3.jpg ---------- Prediction for /home/sea/Downloads/images/horse/3.jpg ---------- 0.4899 - "1 airplane" 0.3042 - "8 horse" 0.0510 - "3 bird" 0.0483 - "5 deer" 0.0292 - "6 dog" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/4.jpg ---------- Prediction for /home/sea/Downloads/images/horse/4.jpg ---------- 0.5670 - "10 truck" 0.1927 - "8 horse" 0.1813 - "1 airplane" 0.0370 - "3 bird" 0.0071 - "4 cat" sea@sea-X550JK:~/caffe$ sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/5.jpg ---------- Prediction for /home/sea/Downloads/images/horse/5.jpg ---------- 0.2184 - "1 airplane" 0.1759 - "5 deer" 0.1625 - "8 horse" 0.1279 - "3 bird" 0.0847 - "10 truck" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/6.jpg ---------- Prediction for /home/sea/Downloads/images/horse/6.jpg ---------- 0.2841 - "7 frog" 0.1913 - "6 dog" 0.1671 - "8 horse" 0.1276 - "5 deer" 0.0719 - "3 bird" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/7.jpg ---------- Prediction for /home/sea/Downloads/images/horse/7.jpg ---------- 0.8176 - "8 horse" 0.0612 - "6 dog" 0.0538 - "3 bird" 0.0346 - "10 truck" 0.0137 - "4 cat" sea@sea-X550JK:~/caffe$ classification ./examples/cifar10/cifar10_full.prototxt ./examples/cifar10/cifar10_full_iter_70000.caffemodel.h5 ./examples/cifar10/mean.binaryproto ./examples/cifar10/labels.txt ~/Downloads/images/horse/8.jpg ---------- Prediction for /home/sea/Downloads/images/horse/8.jpg ---------- 0.3815 - "5 deer" 0.1820 - "8 horse" 0.1030 - "7 frog" 0.1028 - "1 airplane" 0.1021 - "6 dog"
换马试试, 正确率为12.5%。 继续很低。 但这并没有错的。
考察模型 resnet152_v2.caffemodel:
caffe test -model /media/sea/wsWin10/model-zoo/ResNet-152/deploy.prototxt \
-weights /media/sea/wsWin10/model-zoo/ResNet-152/resnet152_v2.caffemodel -gpu 0
每一个不曾起舞的日子,都是对生命的辜负。
But it is the same with man as with the tree. The more he seeks to rise into the height and light, the more vigorously do his roots struggle earthward, downward, into the dark, the deep - into evil.
其实人跟树是一样的,越是向往高处的阳光,它的根就越要伸向黑暗的地底。----尼采
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
· 25岁的心里话