caffe搭建以及初步学习--win7-vs2013-gtx650tiboost-cuda8.0-cifar10训练和测试-2-快速解决方案cifar10_quick_solver.prototxt
首先安装好显卡----已经装好了?喜大普奔!没装好?那就用cpu,也是一样的。
拷贝cudnn v5.0 头文件和库文件以及执行文件到cuda8中
-----------------------------准备工作--------------------------------------
git clone https://github.com/BVLC/caffe.git
git branch -a
git checkout windows
cmake-gui
configure + vs2013 Win64
修改设置atlas选项为 open
build-malab on
检查numpy是否安装,是否配置正确
configure
generate
----------------------------build---------------------------------------
choose release mode
build all
reload and build all
build-install
set to path
-----------------------------wget----------------------------------------------
wget --no-check-certificate http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz
./get_cifar10.sh (只执行解压缩那部分的语句,其余的不要。)即:
tar -xvf cifar-10-binary.tar.gz && rm -f cifar-10-binary.tar.gz
mv cifar-10-batches-bin/* . && rm -rf cifar-10-batches-bin
(放在了example目录下了)
====================================华丽的分割线--摘要===========================================
convert_cifar_data.exe data/cifar10 examples/cifar10 lmdb
compute_image_mean.exe -backend=lmdb examples/cifar10/cifar10_train_lmdb examples/cifar10/mean.binaryproto
caffe train --solver=examples/cifar10/cifar10_quick_solver.prototxt
caffe train --solver=examples/cifar10/cifar10_quick_solver_lr1.prototxt --snapshot=examples/cifar10/cifar10_quick_iter_4000.solverstate
caffe test -model examples/cifar10/cifar10_quick_train_test.prototxt -weights examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 -iterations 100
classification.exe examples/cifar10/cifar10_quick.prototxt examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 examples/cifar10/mean.binaryproto data/cifar10/synset_words.txt examples/images/cat.jpg
classification.exe examples/cifar10/cifar10_quick.prototxt examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 examples/cifar10/mean.binaryproto data/cifar10/synset_words.txt examples/images/fish-bike
---------------------------------------
synset_words.txt 的内容如下:
- airplane
- automobile
- bird
- cat
- deer
- dog
- frog
- horse
- ship
- truck
-------------------------------------------------------------------------------------------------------
ex1. 识别一只猫:
classification.exe examples/cifar10/cifar10_quick.prototxt examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 examples/cifar10/mean.binaryproto data/cifar10/synset_words.txt examples/images/cat.jpg
---------- Prediction for examples/images/cat.jpg ----------
0.3606 - "cat "
0.3349 - "deer "
0.1377 - "dog "
0.0930 - "truck "
0.0485 - "horse "
classification.exe examples/cifar10/cifar10_quick.prototxt examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 examples/cifar10/mean.binaryproto data/cifar10/synset_words.txt examples/images/fish-bike
---------- Prediction for examples/images/fish-bike.jpg ----------
0.9334 - "horse "
0.0268 - "airplane "
0.0148 - "deer "
0.0103 - "bird "
0.0090 - "ship "
----------------------------------------------------------------------------------------------------------------------------------------------
命令和参数的解释:
caffe train --solver=examples/cifar10/cifar10_quick_solver.prototxt
上述命令执行完毕后会生成cifar10_quick_iter_4000.caffemodel以及cifar10_quick_iter_4000.solverstate两个文件,位置在examples/cifar10/下面,这是确定的,不用人工指定。
其中cifar10_quick_iter_4000.solverstate将在进一步的训练中使用到,而cifar10_quick_iter_4000.caffemodel模型权值文件可用于数据集的测试
(此处可不用,因为还有下面更深层的训练,会生成更深层的模型权值文件cifar10_quick_iter_5000.caffemodel.h5)。
caffe train --solver=examples/cifar10/cifar10_quick_solver_lr1.prototxt --snapshot=examples/cifar10/cifar10_quick_iter_4000.solverstate
上述命令执行完毕后会生成cifar10_quick_iter_5000.caffemodel.h5以及cifar10_quick_iter_5000.solverstate.h5两个文件,在此例子中,就是用cifar10_quick_iter_5000.caffemodel.h5模型权值文件进行预测的。
【必须注意的是】修改对应需要文件的路径(因为我们是在windows下执行的),否则会一直报错,可以根据报错内容修改对应的文件路径,需要修改的文件内容中的路径一般是cifar10_quick_solver.prototxt和cifar10_quick_solver_lr1.prototxt中的net以及snapshot_prefix对应的路径,还有cifar10_quick_train_test.prototxt中的mean_file和source对应的路径。事实上,本人没有做任何修改,直接运行即可。
下面将对配置文件中的内容进行简单说明或解释:
net:用于训练、预测的网络描述文件
test_iter:预测阶段迭代次数
test_interval:训练时每迭代多少次,进行一次预测
base_lr、momentum、weight_delay:网络的基础学习速率、冲量和权衰量
lr_policy:学习速率的衰减策略
display:每经过多少次迭代,在屏幕上打印一次运行日志
max_iter:最大迭代次数
snapshot:每多少次迭代打印一次快照
solver_mode:caffe的求解模式,根据实际情况选择GPU或CPU
caffe test -model examples/cifar10/cifar10_quick_train_test.prototxt -weights examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 -iterations 100
其中:
test :表示只做预测(前向传播计算),不进行参数更新(后向传播计算)
-model examples/cifar10/cifar10_quick_train_test.prototxt:指定模型描述文本文件
-weights examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 :指定模型权值文件,也就是预先训练出来的模型或者说权值文件
-iterations 100:指定迭代的次数,也就是参与测试的样本数目。
===================================超级华丽的分割线1============================================
===================================超级华丽的分割线2============================================
===================================超级华丽的分割线3============================================
===================================超级华丽的分割线4============================================
======================================= 详情 ===============================================
convert_cifar_data.exe data/cifar10 examples/cifar10 lmdb
compute_image_mean.exe -backend=lmdb examples/cifar10/cifar10_train_lmdb examples/cifar10/mean.binaryproto
caffe.exe train --solver=examples/cifar10/cifar10_quick_solver.prototxt
I0703 15:08:42.303948 73968 net.cpp:137] Memory required for data: 1230000
I0703 15:08:42.303948 73968 layer_factory.cpp:58] Creating layer conv1
I0703 15:08:42.303948 73968 net.cpp:84] Creating Layer conv1
I0703 15:08:42.303948 73968 net.cpp:406] conv1 <- data
I0703 15:08:42.303948 73968 net.cpp:380] conv1 -> conv1
I0703 15:08:42.303948 73968 net.cpp:122] Setting up conv1
I0703 15:08:42.303948 73968 net.cpp:129] Top shape: 100 32 32 32 (3276800)
I0703 15:08:42.319548 73968 net.cpp:137] Memory required for data: 14337200
I0703 15:08:42.319548 73968 layer_factory.cpp:58] Creating layer pool1
I0703 15:08:42.319548 73968 net.cpp:84] Creating Layer pool1
I0703 15:08:42.319548 73968 net.cpp:406] pool1 <- conv1
I0703 15:08:42.319548 73968 net.cpp:380] pool1 -> pool1
I0703 15:08:42.319548 73968 net.cpp:122] Setting up pool1
I0703 15:08:42.319548 73968 net.cpp:129] Top shape: 100 32 16 16 (819200)
I0703 15:08:42.319548 73968 net.cpp:137] Memory required for data: 17614000
I0703 15:08:42.319548 73968 layer_factory.cpp:58] Creating layer relu1
I0703 15:08:42.319548 73968 net.cpp:84] Creating Layer relu1
I0703 15:08:42.319548 73968 net.cpp:406] relu1 <- pool1
I0703 15:08:42.319548 73968 net.cpp:367] relu1 -> pool1 (in-place)
I0703 15:08:42.319548 73968 net.cpp:122] Setting up relu1
I0703 15:08:42.319548 73968 net.cpp:129] Top shape: 100 32 16 16 (819200)
I0703 15:08:42.319548 73968 net.cpp:137] Memory required for data: 20890800
I0703 15:08:42.319548 73968 layer_factory.cpp:58] Creating layer conv2
I0703 15:08:42.319548 73968 net.cpp:84] Creating Layer conv2
I0703 15:08:42.319548 73968 net.cpp:406] conv2 <- pool1
I0703 15:08:42.319548 73968 net.cpp:380] conv2 -> conv2
I0703 15:08:42.319548 73968 net.cpp:122] Setting up conv2
I0703 15:08:42.319548 73968 net.cpp:129] Top shape: 100 32 16 16 (819200)
I0703 15:08:42.319548 73968 net.cpp:137] Memory required for data: 24167600
I0703 15:08:42.319548 73968 layer_factory.cpp:58] Creating layer relu2
I0703 15:08:42.319548 73968 net.cpp:84] Creating Layer relu2
I0703 15:08:42.319548 73968 net.cpp:406] relu2 <- conv2
I0703 15:08:42.319548 73968 net.cpp:367] relu2 -> conv2 (in-place)
I0703 15:08:42.335150 73968 net.cpp:122] Setting up relu2
I0703 15:08:42.335150 73968 net.cpp:129] Top shape: 100 32 16 16 (819200)
I0703 15:08:42.335150 73968 net.cpp:137] Memory required for data: 27444400
I0703 15:08:42.335150 73968 layer_factory.cpp:58] Creating layer pool2
I0703 15:08:42.335150 73968 net.cpp:84] Creating Layer pool2
I0703 15:08:42.335150 73968 net.cpp:406] pool2 <- conv2
I0703 15:08:42.335150 73968 net.cpp:380] pool2 -> pool2
I0703 15:08:42.335150 73968 net.cpp:122] Setting up pool2
I0703 15:08:42.335150 73968 net.cpp:129] Top shape: 100 32 8 8 (204800)
I0703 15:08:42.335150 73968 net.cpp:137] Memory required for data: 28263600
I0703 15:08:42.335150 73968 layer_factory.cpp:58] Creating layer conv3
I0703 15:08:42.335150 73968 net.cpp:84] Creating Layer conv3
I0703 15:08:42.335150 73968 net.cpp:406] conv3 <- pool2
I0703 15:08:42.335150 73968 net.cpp:380] conv3 -> conv3
I0703 15:08:42.335150 73968 net.cpp:122] Setting up conv3
I0703 15:08:42.335150 73968 net.cpp:129] Top shape: 100 64 8 8 (409600)
I0703 15:08:42.335150 73968 net.cpp:137] Memory required for data: 29902000
I0703 15:08:42.335150 73968 layer_factory.cpp:58] Creating layer relu3
I0703 15:08:42.335150 73968 net.cpp:84] Creating Layer relu3
I0703 15:08:42.335150 73968 net.cpp:406] relu3 <- conv3
I0703 15:08:42.335150 73968 net.cpp:367] relu3 -> conv3 (in-place)
I0703 15:08:42.335150 73968 net.cpp:122] Setting up relu3
I0703 15:08:42.335150 73968 net.cpp:129] Top shape: 100 64 8 8 (409600)
I0703 15:08:42.335150 73968 net.cpp:137] Memory required for data: 31540400
I0703 15:08:42.335150 73968 layer_factory.cpp:58] Creating layer pool3
I0703 15:08:42.350749 73968 net.cpp:84] Creating Layer pool3
I0703 15:08:42.350749 73968 net.cpp:406] pool3 <- conv3
I0703 15:08:42.350749 73968 net.cpp:380] pool3 -> pool3
I0703 15:08:42.350749 73968 net.cpp:122] Setting up pool3
I0703 15:08:42.350749 73968 net.cpp:129] Top shape: 100 64 4 4 (102400)
I0703 15:08:42.350749 73968 net.cpp:137] Memory required for data: 31950000
I0703 15:08:42.350749 73968 layer_factory.cpp:58] Creating layer ip1
I0703 15:08:42.350749 73968 net.cpp:84] Creating Layer ip1
I0703 15:08:42.350749 73968 net.cpp:406] ip1 <- pool3
I0703 15:08:42.350749 73968 net.cpp:380] ip1 -> ip1
I0703 15:08:42.350749 73968 net.cpp:122] Setting up ip1
I0703 15:08:42.350749 73968 net.cpp:129] Top shape: 100 64 (6400)
I0703 15:08:42.350749 73968 net.cpp:137] Memory required for data: 31975600
I0703 15:08:42.350749 73968 layer_factory.cpp:58] Creating layer ip2
I0703 15:08:42.350749 73968 net.cpp:84] Creating Layer ip2
I0703 15:08:42.350749 73968 net.cpp:406] ip2 <- ip1
I0703 15:08:42.350749 73968 net.cpp:380] ip2 -> ip2
I0703 15:08:42.350749 73968 net.cpp:122] Setting up ip2
I0703 15:08:42.350749 73968 net.cpp:129] Top shape: 100 10 (1000)
I0703 15:08:42.350749 73968 net.cpp:137] Memory required for data: 31979600
I0703 15:08:42.350749 73968 layer_factory.cpp:58] Creating layer ip2_ip2_0_split
I0703 15:08:42.350749 73968 net.cpp:84] Creating Layer ip2_ip2_0_split
I0703 15:08:42.350749 73968 net.cpp:406] ip2_ip2_0_split <- ip2
I0703 15:08:42.350749 73968 net.cpp:380] ip2_ip2_0_split -> ip2_ip2_0_split_0
I0703 15:08:42.350749 73968 net.cpp:380] ip2_ip2_0_split -> ip2_ip2_0_split_1
I0703 15:08:42.350749 73968 net.cpp:122] Setting up ip2_ip2_0_split
I0703 15:08:42.350749 73968 net.cpp:129] Top shape: 100 10 (1000)
I0703 15:08:42.350749 73968 net.cpp:129] Top shape: 100 10 (1000)
I0703 15:08:42.350749 73968 net.cpp:137] Memory required for data: 31987600
I0703 15:08:42.350749 73968 layer_factory.cpp:58] Creating layer accuracy
I0703 15:08:42.350749 73968 net.cpp:84] Creating Layer accuracy
I0703 15:08:42.350749 73968 net.cpp:406] accuracy <- ip2_ip2_0_split_0
I0703 15:08:42.350749 73968 net.cpp:406] accuracy <- label_cifar_1_split_0
I0703 15:08:42.366350 73968 net.cpp:380] accuracy -> accuracy
I0703 15:08:42.366350 73968 net.cpp:122] Setting up accuracy
I0703 15:08:42.366350 73968 net.cpp:129] Top shape: (1)
I0703 15:08:42.366350 73968 net.cpp:137] Memory required for data: 31987604
I0703 15:08:42.366350 73968 layer_factory.cpp:58] Creating layer loss
I0703 15:08:42.366350 73968 net.cpp:84] Creating Layer loss
I0703 15:08:42.366350 73968 net.cpp:406] loss <- ip2_ip2_0_split_1
I0703 15:08:42.366350 73968 net.cpp:406] loss <- label_cifar_1_split_1
I0703 15:08:42.366350 73968 net.cpp:380] loss -> loss
I0703 15:08:42.366350 73968 layer_factory.cpp:58] Creating layer loss
I0703 15:08:42.366350 73968 net.cpp:122] Setting up loss
I0703 15:08:42.366350 73968 net.cpp:129] Top shape: (1)
I0703 15:08:42.366350 73968 net.cpp:132] with loss weight 1
I0703 15:08:42.366350 73968 net.cpp:137] Memory required for data: 31987608
I0703 15:08:42.366350 73968 net.cpp:198] loss needs backward computation.
I0703 15:08:42.366350 73968 net.cpp:200] accuracy does not need backward computation.
I0703 15:08:42.366350 73968 net.cpp:198] ip2_ip2_0_split needs backward computation.
I0703 15:08:42.366350 73968 net.cpp:198] ip2 needs backward computation.
I0703 15:08:42.366350 73968 net.cpp:198] ip1 needs backward computation.
I0703 15:08:42.366350 73968 net.cpp:198] pool3 needs backward computation.
I0703 15:08:42.366350 73968 net.cpp:198] relu3 needs backward computation.
I0703 15:08:42.366350 73968 net.cpp:198] conv3 needs backward computation.
I0703 15:08:42.366350 73968 net.cpp:198] pool2 needs backward computation.
I0703 15:08:42.366350 73968 net.cpp:198] relu2 needs backward computation.
I0703 15:08:42.366350 73968 net.cpp:198] conv2 needs backward computation.
I0703 15:08:42.366350 73968 net.cpp:198] relu1 needs backward computation.
I0703 15:08:42.366350 73968 net.cpp:198] pool1 needs backward computation.
I0703 15:08:42.366350 73968 net.cpp:198] conv1 needs backward computation.
I0703 15:08:42.366350 73968 net.cpp:200] label_cifar_1_split does not need backward computation.
I0703 15:08:42.366350 73968 net.cpp:200] cifar does not need backward computation.
I0703 15:08:42.366350 73968 net.cpp:242] This network produces output accuracy
I0703 15:08:42.366350 73968 net.cpp:242] This network produces output loss
I0703 15:08:42.366350 73968 net.cpp:255] Network initialization done.
I0703 15:08:42.366350 73968 solver.cpp:56] Solver scaffolding done.
I0703 15:08:42.366350 73968 caffe.cpp:249] Starting Optimization
I0703 15:08:42.366350 73968 solver.cpp:272] Solving CIFAR10_quick
I0703 15:08:42.366350 73968 solver.cpp:273] Learning Rate Policy: fixed
I0703 15:08:42.413151 73968 solver.cpp:330] Iteration 0, Testing net (#0)
I0703 15:08:43.629990 70280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:08:43.661191 73968 solver.cpp:397] Test net output #0: accuracy = 0.0986
I0703 15:08:43.661191 73968 solver.cpp:397] Test net output #1: loss = 2.30244 (* 1 = 2.30244 loss)
I0703 15:08:43.707993 73968 solver.cpp:218] Iteration 0 (-5.42863e-042 iter/s, 1.29273s/100 iters), loss = 2.30274
I0703 15:08:43.707993 73968 solver.cpp:237] Train net output #0: loss = 2.30274 (* 1 = 2.30274 loss)
I0703 15:08:43.707993 73968 sgd_solver.cpp:105] Iteration 0, lr = 0.001
I0703 15:08:46.640887 73968 solver.cpp:218] Iteration 100 (34.1913 iter/s, 2.92472s/100 iters), loss = 1.65303
I0703 15:08:46.640887 73968 solver.cpp:237] Train net output #0: loss = 1.65303 (* 1 = 1.65303 loss)
I0703 15:08:46.640887 73968 sgd_solver.cpp:105] Iteration 100, lr = 0.001
I0703 15:08:49.563181 73968 solver.cpp:218] Iteration 200 (34.1799 iter/s, 2.9257s/100 iters), loss = 1.60865
I0703 15:08:49.563181 73968 solver.cpp:237] Train net output #0: loss = 1.60865 (* 1 = 1.60865 loss)
I0703 15:08:49.563181 73968 sgd_solver.cpp:105] Iteration 200, lr = 0.001
I0703 15:08:52.480474 73968 solver.cpp:218] Iteration 300 (34.2469 iter/s, 2.91998s/100 iters), loss = 1.185
I0703 15:08:52.480474 73968 solver.cpp:237] Train net output #0: loss = 1.185 (* 1 = 1.185 loss)
I0703 15:08:52.480474 73968 sgd_solver.cpp:105] Iteration 300, lr = 0.001
I0703 15:08:55.428969 73968 solver.cpp:218] Iteration 400 (34.0078 iter/s, 2.9405s/100 iters), loss = 1.22841
I0703 15:08:55.428969 73968 solver.cpp:237] Train net output #0: loss = 1.22841 (* 1 = 1.22841 loss)
I0703 15:08:55.428969 73968 sgd_solver.cpp:105] Iteration 400, lr = 0.001
I0703 15:08:58.253659 71148 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:08:58.347262 73968 solver.cpp:330] Iteration 500, Testing net (#0)
I0703 15:08:59.486099 70280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:08:59.517300 73968 solver.cpp:397] Test net output #0: accuracy = 0.5535
I0703 15:08:59.517300 73968 solver.cpp:397] Test net output #1: loss = 1.2742 (* 1 = 1.2742 loss)
I0703 15:08:59.548501 73968 solver.cpp:218] Iteration 500 (24.261 iter/s, 4.12185s/100 iters), loss = 1.23252
I0703 15:08:59.548501 73968 solver.cpp:237] Train net output #0: loss = 1.23252 (* 1 = 1.23252 loss)
I0703 15:08:59.548501 73968 sgd_solver.cpp:105] Iteration 500, lr = 0.001
I0703 15:09:02.512596 73968 solver.cpp:218] Iteration 600 (33.7982 iter/s, 2.95873s/100 iters), loss = 1.25093
I0703 15:09:02.512596 73968 solver.cpp:237] Train net output #0: loss = 1.25093 (* 1 = 1.25093 loss)
I0703 15:09:02.512596 73968 sgd_solver.cpp:105] Iteration 600, lr = 0.001
I0703 15:09:05.493698 73968 solver.cpp:218] Iteration 700 (33.3689 iter/s, 2.99681s/100 iters), loss = 1.15823
I0703 15:09:05.494699 73968 solver.cpp:237] Train net output #0: loss = 1.15823 (* 1 = 1.15823 loss)
I0703 15:09:05.494699 73968 sgd_solver.cpp:105] Iteration 700, lr = 0.001
I0703 15:09:08.483223 73968 solver.cpp:218] Iteration 800 (33.6528 iter/s, 2.97152s/100 iters), loss = 1.02646
I0703 15:09:08.483223 73968 solver.cpp:237] Train net output #0: loss = 1.02646 (* 1 = 1.02646 loss)
I0703 15:09:08.483223 73968 sgd_solver.cpp:105] Iteration 800, lr = 0.001
I0703 15:09:11.447319 73968 solver.cpp:218] Iteration 900 (33.8917 iter/s, 2.95058s/100 iters), loss = 1.09516
I0703 15:09:11.447319 73968 solver.cpp:237] Train net output #0: loss = 1.09516 (* 1 = 1.09516 loss)
I0703 15:09:11.447319 73968 sgd_solver.cpp:105] Iteration 900, lr = 0.001
I0703 15:09:14.285416 71148 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:09:14.394620 73968 solver.cpp:330] Iteration 1000, Testing net (#0)
I0703 15:09:15.551057 70280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:09:15.597858 73968 solver.cpp:397] Test net output #0: accuracy = 0.6325
I0703 15:09:15.597858 73968 solver.cpp:397] Test net output #1: loss = 1.05842 (* 1 = 1.05842 loss)
I0703 15:09:15.629060 73968 solver.cpp:218] Iteration 1000 (23.9025 iter/s, 4.18367s/100 iters), loss = 0.983432
I0703 15:09:15.629060 73968 solver.cpp:237] Train net output #0: loss = 0.983432 (* 1 = 0.983432 loss)
I0703 15:09:15.629060 73968 sgd_solver.cpp:105] Iteration 1000, lr = 0.001
I0703 15:09:18.599957 73968 solver.cpp:218] Iteration 1100 (33.8006 iter/s, 2.95853s/100 iters), loss = 1.06141
I0703 15:09:18.599957 73968 solver.cpp:237] Train net output #0: loss = 1.06141 (* 1 = 1.06141 loss)
I0703 15:09:18.599957 73968 sgd_solver.cpp:105] Iteration 1100, lr = 0.001
I0703 15:09:19.317580 73968 blocking_queue.cpp:49] Waiting for data
I0703 15:09:21.548452 73968 solver.cpp:218] Iteration 1200 (33.9381 iter/s, 2.94654s/100 iters), loss = 0.950789
I0703 15:09:21.548452 73968 solver.cpp:237] Train net output #0: loss = 0.950789 (* 1 = 0.950789 loss)
I0703 15:09:21.548452 73968 sgd_solver.cpp:105] Iteration 1200, lr = 0.001
I0703 15:09:24.512547 73968 solver.cpp:218] Iteration 1300 (33.7456 iter/s, 2.96335s/100 iters), loss = 0.845029
I0703 15:09:24.512547 73968 solver.cpp:237] Train net output #0: loss = 0.845029 (* 1 = 0.845029 loss)
I0703 15:09:24.512547 73968 sgd_solver.cpp:105] Iteration 1300, lr = 0.001
I0703 15:09:27.538540 73968 solver.cpp:218] Iteration 1400 (33.0713 iter/s, 3.02377s/100 iters), loss = 0.854708
I0703 15:09:27.538540 73968 solver.cpp:237] Train net output #0: loss = 0.854708 (* 1 = 0.854708 loss)
I0703 15:09:27.538540 73968 sgd_solver.cpp:105] Iteration 1400, lr = 0.001
I0703 15:09:30.405486 71148 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:09:30.499089 73968 solver.cpp:330] Iteration 1500, Testing net (#0)
I0703 15:09:31.642729 70280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:09:31.689529 73968 solver.cpp:397] Test net output #0: accuracy = 0.666
I0703 15:09:31.689529 73968 solver.cpp:397] Test net output #1: loss = 0.965108 (* 1 = 0.965108 loss)
I0703 15:09:31.706130 73968 solver.cpp:218] Iteration 1500 (23.9048 iter/s, 4.18326s/100 iters), loss = 0.803068
I0703 15:09:31.706130 73968 solver.cpp:237] Train net output #0: loss = 0.803068 (* 1 = 0.803068 loss)
I0703 15:09:31.706130 73968 sgd_solver.cpp:105] Iteration 1500, lr = 0.001
I0703 15:09:34.671032 73968 solver.cpp:218] Iteration 1600 (33.9581 iter/s, 2.94481s/100 iters), loss = 0.89545
I0703 15:09:34.671032 73968 solver.cpp:237] Train net output #0: loss = 0.89545 (* 1 = 0.89545 loss)
I0703 15:09:34.671032 73968 sgd_solver.cpp:105] Iteration 1600, lr = 0.001
I0703 15:09:37.666788 73968 solver.cpp:218] Iteration 1700 (33.1725 iter/s, 3.01455s/100 iters), loss = 0.858076
I0703 15:09:37.667788 73968 solver.cpp:237] Train net output #0: loss = 0.858076 (* 1 = 0.858076 loss)
I0703 15:09:37.667788 73968 sgd_solver.cpp:105] Iteration 1700, lr = 0.001
I0703 15:09:40.681776 73968 solver.cpp:218] Iteration 1800 (33.4777 iter/s, 2.98707s/100 iters), loss = 0.739417
I0703 15:09:40.681776 73968 solver.cpp:237] Train net output #0: loss = 0.739417 (* 1 = 0.739417 loss)
I0703 15:09:40.681776 73968 sgd_solver.cpp:105] Iteration 1800, lr = 0.001
I0703 15:09:43.649132 73968 solver.cpp:218] Iteration 1900 (33.6842 iter/s, 2.96875s/100 iters), loss = 0.755557
I0703 15:09:43.649132 73968 solver.cpp:237] Train net output #0: loss = 0.755557 (* 1 = 0.755557 loss)
I0703 15:09:43.649132 73968 sgd_solver.cpp:105] Iteration 1900, lr = 0.001
I0703 15:09:46.534909 71148 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:09:46.628511 73968 solver.cpp:330] Iteration 2000, Testing net (#0)
I0703 15:09:47.772374 70280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:09:47.819176 73968 solver.cpp:397] Test net output #0: accuracy = 0.7016
I0703 15:09:47.819176 73968 solver.cpp:397] Test net output #1: loss = 0.878213 (* 1 = 0.878213 loss)
I0703 15:09:47.850378 73968 solver.cpp:218] Iteration 2000 (23.8369 iter/s, 4.19518s/100 iters), loss = 0.678401
I0703 15:09:47.850378 73968 solver.cpp:237] Train net output #0: loss = 0.678401 (* 1 = 0.678401 loss)
I0703 15:09:47.850378 73968 sgd_solver.cpp:105] Iteration 2000, lr = 0.001
I0703 15:09:50.791185 73968 solver.cpp:218] Iteration 2100 (33.7445 iter/s, 2.96345s/100 iters), loss = 0.790343
I0703 15:09:50.792186 73968 solver.cpp:237] Train net output #0: loss = 0.790343 (* 1 = 0.790343 loss)
I0703 15:09:50.792186 73968 sgd_solver.cpp:105] Iteration 2100, lr = 0.001
I0703 15:09:53.723479 73968 solver.cpp:218] Iteration 2200 (34.139 iter/s, 2.9292s/100 iters), loss = 0.792828
I0703 15:09:53.723479 73968 solver.cpp:237] Train net output #0: loss = 0.792828 (* 1 = 0.792828 loss)
I0703 15:09:53.723479 73968 sgd_solver.cpp:105] Iteration 2200, lr = 0.001
I0703 15:09:56.723778 73968 solver.cpp:218] Iteration 2300 (33.3467 iter/s, 2.9988s/100 iters), loss = 0.634268
I0703 15:09:56.724778 73968 solver.cpp:237] Train net output #0: loss = 0.634268 (* 1 = 0.634268 loss)
I0703 15:09:56.724778 73968 sgd_solver.cpp:105] Iteration 2300, lr = 0.001
I0703 15:09:59.751081 73968 solver.cpp:218] Iteration 2400 (33.0722 iter/s, 3.02369s/100 iters), loss = 0.730874
I0703 15:09:59.752081 73968 solver.cpp:237] Train net output #0: loss = 0.730874 (* 1 = 0.730874 loss)
I0703 15:09:59.752081 73968 sgd_solver.cpp:105] Iteration 2400, lr = 0.001
I0703 15:10:02.642370 71148 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:10:02.746381 73968 solver.cpp:330] Iteration 2500, Testing net (#0)
I0703 15:10:03.921499 70280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:10:03.966502 73968 solver.cpp:397] Test net output #0: accuracy = 0.7126
I0703 15:10:03.966502 73968 solver.cpp:397] Test net output #1: loss = 0.845339 (* 1 = 0.845339 loss)
I0703 15:10:03.996505 73968 solver.cpp:218] Iteration 2500 (23.57 iter/s, 4.24269s/100 iters), loss = 0.613872
I0703 15:10:03.997506 73968 solver.cpp:237] Train net output #0: loss = 0.613872 (* 1 = 0.613872 loss)
I0703 15:10:03.997506 73968 sgd_solver.cpp:105] Iteration 2500, lr = 0.001
I0703 15:10:06.947801 73968 solver.cpp:218] Iteration 2600 (33.9124 iter/s, 2.94878s/100 iters), loss = 0.713529
I0703 15:10:06.948801 73968 solver.cpp:237] Train net output #0: loss = 0.713529 (* 1 = 0.713529 loss)
I0703 15:10:06.949801 73968 sgd_solver.cpp:105] Iteration 2600, lr = 0.001
I0703 15:10:09.897095 73968 solver.cpp:218] Iteration 2700 (33.94 iter/s, 2.94638s/100 iters), loss = 0.749147
I0703 15:10:09.898097 73968 solver.cpp:237] Train net output #0: loss = 0.749147 (* 1 = 0.749147 loss)
I0703 15:10:09.898097 73968 sgd_solver.cpp:105] Iteration 2700, lr = 0.001
I0703 15:10:12.863761 73968 solver.cpp:218] Iteration 2800 (33.7369 iter/s, 2.96411s/100 iters), loss = 0.570446
I0703 15:10:12.864761 73968 solver.cpp:237] Train net output #0: loss = 0.570446 (* 1 = 0.570446 loss)
I0703 15:10:12.865762 73968 sgd_solver.cpp:105] Iteration 2800, lr = 0.001
I0703 15:10:15.809679 73968 solver.cpp:218] Iteration 2900 (33.9821 iter/s, 2.94273s/100 iters), loss = 0.713307
I0703 15:10:15.810678 73968 solver.cpp:237] Train net output #0: loss = 0.713307 (* 1 = 0.713307 loss)
I0703 15:10:15.811678 73968 sgd_solver.cpp:105] Iteration 2900, lr = 0.001
I0703 15:10:18.606696 71148 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:10:18.704706 73968 solver.cpp:330] Iteration 3000, Testing net (#0)
I0703 15:10:19.830818 70280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:10:19.873823 73968 solver.cpp:397] Test net output #0: accuracy = 0.7197
I0703 15:10:19.874824 73968 solver.cpp:397] Test net output #1: loss = 0.835526 (* 1 = 0.835526 loss)
I0703 15:10:19.903826 73968 solver.cpp:218] Iteration 3000 (24.4437 iter/s, 4.09103s/100 iters), loss = 0.57974
I0703 15:10:19.904826 73968 solver.cpp:237] Train net output #0: loss = 0.57974 (* 1 = 0.57974 loss)
I0703 15:10:19.905827 73968 sgd_solver.cpp:105] Iteration 3000, lr = 0.001
I0703 15:10:22.878123 73968 solver.cpp:218] Iteration 3100 (33.657 iter/s, 2.97115s/100 iters), loss = 0.664127
I0703 15:10:22.879123 73968 solver.cpp:237] Train net output #0: loss = 0.664127 (* 1 = 0.664127 loss)
I0703 15:10:22.879123 73968 sgd_solver.cpp:105] Iteration 3100, lr = 0.001
I0703 15:10:25.912427 73968 solver.cpp:218] Iteration 3200 (32.9824 iter/s, 3.03192s/100 iters), loss = 0.726144
I0703 15:10:25.913427 73968 solver.cpp:237] Train net output #0: loss = 0.726144 (* 1 = 0.726144 loss)
I0703 15:10:25.914427 73968 sgd_solver.cpp:105] Iteration 3200, lr = 0.001
I0703 15:10:28.902726 73968 solver.cpp:218] Iteration 3300 (33.4837 iter/s, 2.98653s/100 iters), loss = 0.597564
I0703 15:10:28.902726 73968 solver.cpp:237] Train net output #0: loss = 0.597564 (* 1 = 0.597564 loss)
I0703 15:10:28.903726 73968 sgd_solver.cpp:105] Iteration 3300, lr = 0.001
I0703 15:10:31.947031 73968 solver.cpp:218] Iteration 3400 (32.872 iter/s, 3.0421s/100 iters), loss = 0.663627
I0703 15:10:31.948030 73968 solver.cpp:237] Train net output #0: loss = 0.663627 (* 1 = 0.663627 loss)
I0703 15:10:31.948030 73968 sgd_solver.cpp:105] Iteration 3400, lr = 0.001
I0703 15:10:34.875890 71148 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:10:34.976495 73968 solver.cpp:330] Iteration 3500, Testing net (#0)
I0703 15:10:36.121947 70280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:10:36.185348 73968 solver.cpp:397] Test net output #0: accuracy = 0.7187
I0703 15:10:36.185348 73968 solver.cpp:397] Test net output #1: loss = 0.862067 (* 1 = 0.862067 loss)
I0703 15:10:36.216549 73968 solver.cpp:218] Iteration 3500 (23.5687 iter/s, 4.24291s/100 iters), loss = 0.560303
I0703 15:10:36.216549 73968 solver.cpp:237] Train net output #0: loss = 0.560303 (* 1 = 0.560303 loss)
I0703 15:10:36.216549 73968 sgd_solver.cpp:105] Iteration 3500, lr = 0.001
I0703 15:10:39.186511 73968 solver.cpp:218] Iteration 3600 (33.6513 iter/s, 2.97165s/100 iters), loss = 0.619981
I0703 15:10:39.186511 73968 solver.cpp:237] Train net output #0: loss = 0.619981 (* 1 = 0.619981 loss)
I0703 15:10:39.186511 73968 sgd_solver.cpp:105] Iteration 3600, lr = 0.001
I0703 15:10:42.190245 73968 solver.cpp:218] Iteration 3700 (33.4028 iter/s, 2.99376s/100 iters), loss = 0.798935
I0703 15:10:42.190245 73968 solver.cpp:237] Train net output #0: loss = 0.798935 (* 1 = 0.798935 loss)
I0703 15:10:42.190245 73968 sgd_solver.cpp:105] Iteration 3700, lr = 0.001
I0703 15:10:45.185573 73968 solver.cpp:218] Iteration 3800 (33.3392 iter/s, 2.99947s/100 iters), loss = 0.563457
I0703 15:10:45.185573 73968 solver.cpp:237] Train net output #0: loss = 0.563457 (* 1 = 0.563457 loss)
I0703 15:10:45.185573 73968 sgd_solver.cpp:105] Iteration 3800, lr = 0.001
I0703 15:10:48.180902 73968 solver.cpp:218] Iteration 3900 (33.4396 iter/s, 2.99047s/100 iters), loss = 0.629793
I0703 15:10:48.180902 73968 solver.cpp:237] Train net output #0: loss = 0.629793 (* 1 = 0.629793 loss)
I0703 15:10:48.180902 73968 sgd_solver.cpp:105] Iteration 3900, lr = 0.001
I0703 15:10:51.034423 71148 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:10:51.128026 73968 solver.cpp:447] Snapshotting to binary proto file examples/cifar10/cifar10_quick_iter_4000.caffemodel
I0703 15:10:51.159227 73968 sgd_solver.cpp:273] Snapshotting solver state to binary proto file examples/cifar10/cifar10_quick_iter_4000.solverstate
I0703 15:10:51.174827 73968 solver.cpp:310] Iteration 4000, loss = 0.518084
I0703 15:10:51.174827 73968 solver.cpp:330] Iteration 4000, Testing net (#0)
I0703 15:10:52.338073 70280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:10:52.378077 73968 solver.cpp:397] Test net output #0: accuracy = 0.7254
I0703 15:10:52.379077 73968 solver.cpp:397] Test net output #1: loss = 0.841199 (* 1 = 0.841199 loss)
I0703 15:10:52.380077 73968 solver.cpp:315] Optimization Done.
I0703 15:10:52.380077 73968 caffe.cpp:260] Optimization Done.
D:\ws_caffe\caffe>
-----------------------------------------------------------------------------------------------------------
caffe train --solver=examples/cifar10/cifar10_quick_solver_lr1.prototxt --snapshot=examples/cifar10/cifar10_quick_iter_4000.solverstate
type: "Convolution"
bottom: "pool1"
top: "conv2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: AVE
kernel_size: 3
stride: 2
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "pool2"
top: "conv3"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 64
pad: 2
kernel_size: 5
stride: 1
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "pool3"
type: "Pooling"
bottom: "conv3"
top: "pool3"
pooling_param {
pool: AVE
kernel_size: 3
stride: 2
}
}
layer {
name: "ip1"
type: "InnerProduct"
bottom: "pool3"
top: "ip1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 64
weight_filler {
type: "gaussian"
std: 0.1
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "ip2"
type: "InnerProduct"
bottom: "ip1"
top: "ip2"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
inner_product_param {
num_output: 10
weight_filler {
type: "gaussian"
std: 0.1
}
bias_filler {
type: "constant"
}
}
}
layer {
name: "accuracy"
type: "Accuracy"
bottom: "ip2"
bottom: "label"
top: "accuracy"
include {
phase: TEST
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "ip2"
bottom: "label"
top: "loss"
}
I0703 15:30:21.819789 74500 layer_factory.cpp:58] Creating layer cifar
I0703 15:30:21.819789 74500 db_lmdb.cpp:40] Opened lmdb examples/cifar10/cifar10_test_lmdb
I0703 15:30:21.819789 74500 net.cpp:84] Creating Layer cifar
I0703 15:30:21.819789 74500 net.cpp:380] cifar -> data
I0703 15:30:21.819789 74500 net.cpp:380] cifar -> label
I0703 15:30:21.819789 74500 data_transformer.cpp:25] Loading mean file from: examples/cifar10/mean.binaryproto
I0703 15:30:21.835391 74500 data_layer.cpp:45] output data size: 100,3,32,32
I0703 15:30:21.835391 74500 net.cpp:122] Setting up cifar
I0703 15:30:21.835391 74500 net.cpp:129] Top shape: 100 3 32 32 (307200)
I0703 15:30:21.835391 74500 net.cpp:129] Top shape: 100 (100)
I0703 15:30:21.835391 74500 net.cpp:137] Memory required for data: 1229200
I0703 15:30:21.835391 74500 layer_factory.cpp:58] Creating layer label_cifar_1_split
I0703 15:30:21.835391 69056 common.cpp:36] System entropy source not available, using fallback algorithm to generate seed instead.
I0703 15:30:21.835391 74500 net.cpp:84] Creating Layer label_cifar_1_split
I0703 15:30:21.835391 74500 net.cpp:406] label_cifar_1_split <- label
I0703 15:30:21.835391 74500 net.cpp:380] label_cifar_1_split -> label_cifar_1_split_0
I0703 15:30:21.835391 74500 net.cpp:380] label_cifar_1_split -> label_cifar_1_split_1
I0703 15:30:21.850993 74500 net.cpp:122] Setting up label_cifar_1_split
I0703 15:30:21.850993 74500 net.cpp:129] Top shape: 100 (100)
I0703 15:30:21.850993 74500 net.cpp:129] Top shape: 100 (100)
I0703 15:30:21.850993 74500 net.cpp:137] Memory required for data: 1230000
I0703 15:30:21.850993 74500 layer_factory.cpp:58] Creating layer conv1
I0703 15:30:21.850993 74500 net.cpp:84] Creating Layer conv1
I0703 15:30:21.850993 74500 net.cpp:406] conv1 <- data
I0703 15:30:21.850993 74500 net.cpp:380] conv1 -> conv1
I0703 15:30:21.850993 74500 net.cpp:122] Setting up conv1
I0703 15:30:21.850993 74500 net.cpp:129] Top shape: 100 32 32 32 (3276800)
I0703 15:30:21.850993 74500 net.cpp:137] Memory required for data: 14337200
I0703 15:30:21.850993 74500 layer_factory.cpp:58] Creating layer pool1
I0703 15:30:21.850993 74500 net.cpp:84] Creating Layer pool1
I0703 15:30:21.850993 74500 net.cpp:406] pool1 <- conv1
I0703 15:30:21.850993 74500 net.cpp:380] pool1 -> pool1
I0703 15:30:21.850993 74500 net.cpp:122] Setting up pool1
I0703 15:30:21.850993 74500 net.cpp:129] Top shape: 100 32 16 16 (819200)
I0703 15:30:21.850993 74500 net.cpp:137] Memory required for data: 17614000
I0703 15:30:21.850993 74500 layer_factory.cpp:58] Creating layer relu1
I0703 15:30:21.850993 74500 net.cpp:84] Creating Layer relu1
I0703 15:30:21.850993 74500 net.cpp:406] relu1 <- pool1
I0703 15:30:21.850993 74500 net.cpp:367] relu1 -> pool1 (in-place)
I0703 15:30:21.850993 74500 net.cpp:122] Setting up relu1
I0703 15:30:21.850993 74500 net.cpp:129] Top shape: 100 32 16 16 (819200)
I0703 15:30:21.850993 74500 net.cpp:137] Memory required for data: 20890800
I0703 15:30:21.850993 74500 layer_factory.cpp:58] Creating layer conv2
I0703 15:30:21.850993 74500 net.cpp:84] Creating Layer conv2
I0703 15:30:21.850993 74500 net.cpp:406] conv2 <- pool1
I0703 15:30:21.850993 74500 net.cpp:380] conv2 -> conv2
I0703 15:30:21.866595 74500 net.cpp:122] Setting up conv2
I0703 15:30:21.866595 74500 net.cpp:129] Top shape: 100 32 16 16 (819200)
I0703 15:30:21.866595 74500 net.cpp:137] Memory required for data: 24167600
I0703 15:30:21.866595 74500 layer_factory.cpp:58] Creating layer relu2
I0703 15:30:21.866595 74500 net.cpp:84] Creating Layer relu2
I0703 15:30:21.866595 74500 net.cpp:406] relu2 <- conv2
I0703 15:30:21.866595 74500 net.cpp:367] relu2 -> conv2 (in-place)
I0703 15:30:21.866595 74500 net.cpp:122] Setting up relu2
I0703 15:30:21.866595 74500 net.cpp:129] Top shape: 100 32 16 16 (819200)
I0703 15:30:21.866595 74500 net.cpp:137] Memory required for data: 27444400
I0703 15:30:21.866595 74500 layer_factory.cpp:58] Creating layer pool2
I0703 15:30:21.866595 74500 net.cpp:84] Creating Layer pool2
I0703 15:30:21.866595 74500 net.cpp:406] pool2 <- conv2
I0703 15:30:21.866595 74500 net.cpp:380] pool2 -> pool2
I0703 15:30:21.866595 74500 net.cpp:122] Setting up pool2
I0703 15:30:21.866595 74500 net.cpp:129] Top shape: 100 32 8 8 (204800)
I0703 15:30:21.866595 74500 net.cpp:137] Memory required for data: 28263600
I0703 15:30:21.866595 74500 layer_factory.cpp:58] Creating layer conv3
I0703 15:30:21.866595 74500 net.cpp:84] Creating Layer conv3
I0703 15:30:21.866595 74500 net.cpp:406] conv3 <- pool2
I0703 15:30:21.866595 74500 net.cpp:380] conv3 -> conv3
I0703 15:30:21.882197 74500 net.cpp:122] Setting up conv3
I0703 15:30:21.882197 74500 net.cpp:129] Top shape: 100 64 8 8 (409600)
I0703 15:30:21.882197 74500 net.cpp:137] Memory required for data: 29902000
I0703 15:30:21.882197 74500 layer_factory.cpp:58] Creating layer relu3
I0703 15:30:21.882197 74500 net.cpp:84] Creating Layer relu3
I0703 15:30:21.882197 74500 net.cpp:406] relu3 <- conv3
I0703 15:30:21.882197 74500 net.cpp:367] relu3 -> conv3 (in-place)
I0703 15:30:21.882197 74500 net.cpp:122] Setting up relu3
I0703 15:30:21.882197 74500 net.cpp:129] Top shape: 100 64 8 8 (409600)
I0703 15:30:21.882197 74500 net.cpp:137] Memory required for data: 31540400
I0703 15:30:21.882197 74500 layer_factory.cpp:58] Creating layer pool3
I0703 15:30:21.882197 74500 net.cpp:84] Creating Layer pool3
I0703 15:30:21.882197 74500 net.cpp:406] pool3 <- conv3
I0703 15:30:21.882197 74500 net.cpp:380] pool3 -> pool3
I0703 15:30:21.882197 74500 net.cpp:122] Setting up pool3
I0703 15:30:21.882197 74500 net.cpp:129] Top shape: 100 64 4 4 (102400)
I0703 15:30:21.882197 74500 net.cpp:137] Memory required for data: 31950000
I0703 15:30:21.882197 74500 layer_factory.cpp:58] Creating layer ip1
I0703 15:30:21.882197 74500 net.cpp:84] Creating Layer ip1
I0703 15:30:21.882197 74500 net.cpp:406] ip1 <- pool3
I0703 15:30:21.882197 74500 net.cpp:380] ip1 -> ip1
I0703 15:30:21.882197 74500 net.cpp:122] Setting up ip1
I0703 15:30:21.897799 74500 net.cpp:129] Top shape: 100 64 (6400)
I0703 15:30:21.897799 74500 net.cpp:137] Memory required for data: 31975600
I0703 15:30:21.897799 74500 layer_factory.cpp:58] Creating layer ip2
I0703 15:30:21.897799 74500 net.cpp:84] Creating Layer ip2
I0703 15:30:21.897799 74500 net.cpp:406] ip2 <- ip1
I0703 15:30:21.897799 74500 net.cpp:380] ip2 -> ip2
I0703 15:30:21.897799 74500 net.cpp:122] Setting up ip2
I0703 15:30:21.897799 74500 net.cpp:129] Top shape: 100 10 (1000)
I0703 15:30:21.897799 74500 net.cpp:137] Memory required for data: 31979600
I0703 15:30:21.897799 74500 layer_factory.cpp:58] Creating layer ip2_ip2_0_split
I0703 15:30:21.897799 74500 net.cpp:84] Creating Layer ip2_ip2_0_split
I0703 15:30:21.897799 74500 net.cpp:406] ip2_ip2_0_split <- ip2
I0703 15:30:21.897799 74500 net.cpp:380] ip2_ip2_0_split -> ip2_ip2_0_split_0
I0703 15:30:21.897799 74500 net.cpp:380] ip2_ip2_0_split -> ip2_ip2_0_split_1
I0703 15:30:21.897799 74500 net.cpp:122] Setting up ip2_ip2_0_split
I0703 15:30:21.897799 74500 net.cpp:129] Top shape: 100 10 (1000)
I0703 15:30:21.897799 74500 net.cpp:129] Top shape: 100 10 (1000)
I0703 15:30:21.897799 74500 net.cpp:137] Memory required for data: 31987600
I0703 15:30:21.897799 74500 layer_factory.cpp:58] Creating layer accuracy
I0703 15:30:21.897799 74500 net.cpp:84] Creating Layer accuracy
I0703 15:30:21.897799 74500 net.cpp:406] accuracy <- ip2_ip2_0_split_0
I0703 15:30:21.897799 74500 net.cpp:406] accuracy <- label_cifar_1_split_0
I0703 15:30:21.897799 74500 net.cpp:380] accuracy -> accuracy
I0703 15:30:21.897799 74500 net.cpp:122] Setting up accuracy
I0703 15:30:21.897799 74500 net.cpp:129] Top shape: (1)
I0703 15:30:21.897799 74500 net.cpp:137] Memory required for data: 31987604
I0703 15:30:21.897799 74500 layer_factory.cpp:58] Creating layer loss
I0703 15:30:21.897799 74500 net.cpp:84] Creating Layer loss
I0703 15:30:21.897799 74500 net.cpp:406] loss <- ip2_ip2_0_split_1
I0703 15:30:21.897799 74500 net.cpp:406] loss <- label_cifar_1_split_1
I0703 15:30:21.897799 74500 net.cpp:380] loss -> loss
I0703 15:30:21.897799 74500 layer_factory.cpp:58] Creating layer loss
I0703 15:30:21.897799 74500 net.cpp:122] Setting up loss
I0703 15:30:21.897799 74500 net.cpp:129] Top shape: (1)
I0703 15:30:21.897799 74500 net.cpp:132] with loss weight 1
I0703 15:30:21.897799 74500 net.cpp:137] Memory required for data: 31987608
I0703 15:30:21.913401 74500 net.cpp:198] loss needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:200] accuracy does not need backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] ip2_ip2_0_split needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] ip2 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] ip1 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] pool3 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] relu3 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] conv3 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] pool2 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] relu2 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] conv2 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] relu1 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] pool1 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] conv1 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:200] label_cifar_1_split does not need backward computation.
I0703 15:30:21.913401 74500 net.cpp:200] cifar does not need backward computation.
I0703 15:30:21.913401 74500 net.cpp:242] This network produces output accuracy
I0703 15:30:21.913401 74500 net.cpp:242] This network produces output loss
I0703 15:30:21.913401 74500 net.cpp:255] Network initialization done.
I0703 15:30:21.913401 74500 solver.cpp:56] Solver scaffolding done.
I0703 15:30:21.913401 74500 caffe.cpp:249] Starting Optimization
I0703 15:30:21.913401 74500 solver.cpp:272] Solving CIFAR10_quick
I0703 15:30:21.913401 74500 solver.cpp:273] Learning Rate Policy: fixed
I0703 15:30:21.913401 74500 solver.cpp:330] Iteration 0, Testing net (#0)
I0703 15:30:22.287849 74500 blocking_queue.cpp:49] Waiting for data
I0703 15:30:23.161561 69056 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:30:23.192765 74500 solver.cpp:397] Test net output #0: accuracy = 0.1001
I0703 15:30:23.192765 74500 solver.cpp:397] Test net output #1: loss = 2.30252 (* 1 = 2.30252 loss)
I0703 15:30:23.223969 74500 solver.cpp:218] Iteration 0 (0 iter/s, 1.31383s/100 iters), loss = 2.30354
I0703 15:30:23.223969 74500 solver.cpp:237] Train net output #0: loss = 2.30354 (* 1 = 2.30354 loss)
I0703 15:30:23.223969 74500 sgd_solver.cpp:105] Iteration 0, lr = 0.001
I0703 15:30:21.850993 74500 net.cpp:137] Memory required for data: 1230000
I0703 15:30:21.850993 74500 layer_factory.cpp:58] Creating layer conv1
I0703 15:30:21.850993 74500 net.cpp:84] Creating Layer conv1
I0703 15:30:21.850993 74500 net.cpp:406] conv1 <- data
I0703 15:30:21.850993 74500 net.cpp:380] conv1 -> conv1
I0703 15:30:21.850993 74500 net.cpp:122] Setting up conv1
I0703 15:30:21.850993 74500 net.cpp:129] Top shape: 100 32 32 32 (3276800)
I0703 15:30:21.850993 74500 net.cpp:137] Memory required for data: 14337200
I0703 15:30:21.850993 74500 layer_factory.cpp:58] Creating layer pool1
I0703 15:30:21.850993 74500 net.cpp:84] Creating Layer pool1
I0703 15:30:21.850993 74500 net.cpp:406] pool1 <- conv1
I0703 15:30:21.850993 74500 net.cpp:380] pool1 -> pool1
I0703 15:30:21.850993 74500 net.cpp:122] Setting up pool1
I0703 15:30:21.850993 74500 net.cpp:129] Top shape: 100 32 16 16 (819200)
I0703 15:30:21.850993 74500 net.cpp:137] Memory required for data: 17614000
I0703 15:30:21.850993 74500 layer_factory.cpp:58] Creating layer relu1
I0703 15:30:21.850993 74500 net.cpp:84] Creating Layer relu1
I0703 15:30:21.850993 74500 net.cpp:406] relu1 <- pool1
I0703 15:30:21.850993 74500 net.cpp:367] relu1 -> pool1 (in-place)
I0703 15:30:21.850993 74500 net.cpp:122] Setting up relu1
I0703 15:30:21.850993 74500 net.cpp:129] Top shape: 100 32 16 16 (819200)
I0703 15:30:21.850993 74500 net.cpp:137] Memory required for data: 20890800
I0703 15:30:21.850993 74500 layer_factory.cpp:58] Creating layer conv2
I0703 15:30:21.850993 74500 net.cpp:84] Creating Layer conv2
I0703 15:30:21.850993 74500 net.cpp:406] conv2 <- pool1
I0703 15:30:21.850993 74500 net.cpp:380] conv2 -> conv2
I0703 15:30:21.866595 74500 net.cpp:122] Setting up conv2
I0703 15:30:21.866595 74500 net.cpp:129] Top shape: 100 32 16 16 (819200)
I0703 15:30:21.866595 74500 net.cpp:137] Memory required for data: 24167600
I0703 15:30:21.866595 74500 layer_factory.cpp:58] Creating layer relu2
I0703 15:30:21.866595 74500 net.cpp:84] Creating Layer relu2
I0703 15:30:21.866595 74500 net.cpp:406] relu2 <- conv2
I0703 15:30:21.866595 74500 net.cpp:367] relu2 -> conv2 (in-place)
I0703 15:30:21.866595 74500 net.cpp:122] Setting up relu2
I0703 15:30:21.866595 74500 net.cpp:129] Top shape: 100 32 16 16 (819200)
I0703 15:30:21.866595 74500 net.cpp:137] Memory required for data: 27444400
I0703 15:30:21.866595 74500 layer_factory.cpp:58] Creating layer pool2
I0703 15:30:21.866595 74500 net.cpp:84] Creating Layer pool2
I0703 15:30:21.866595 74500 net.cpp:406] pool2 <- conv2
I0703 15:30:21.866595 74500 net.cpp:380] pool2 -> pool2
I0703 15:30:21.866595 74500 net.cpp:122] Setting up pool2
I0703 15:30:21.866595 74500 net.cpp:129] Top shape: 100 32 8 8 (204800)
I0703 15:30:21.866595 74500 net.cpp:137] Memory required for data: 28263600
I0703 15:30:21.866595 74500 layer_factory.cpp:58] Creating layer conv3
I0703 15:30:21.866595 74500 net.cpp:84] Creating Layer conv3
I0703 15:30:21.866595 74500 net.cpp:406] conv3 <- pool2
I0703 15:30:21.866595 74500 net.cpp:380] conv3 -> conv3
I0703 15:30:21.882197 74500 net.cpp:122] Setting up conv3
I0703 15:30:21.882197 74500 net.cpp:129] Top shape: 100 64 8 8 (409600)
I0703 15:30:21.882197 74500 net.cpp:137] Memory required for data: 29902000
I0703 15:30:21.882197 74500 layer_factory.cpp:58] Creating layer relu3
I0703 15:30:21.882197 74500 net.cpp:84] Creating Layer relu3
I0703 15:30:21.882197 74500 net.cpp:406] relu3 <- conv3
I0703 15:30:21.882197 74500 net.cpp:367] relu3 -> conv3 (in-place)
I0703 15:30:21.882197 74500 net.cpp:122] Setting up relu3
I0703 15:30:21.882197 74500 net.cpp:129] Top shape: 100 64 8 8 (409600)
I0703 15:30:21.882197 74500 net.cpp:137] Memory required for data: 31540400
I0703 15:30:21.882197 74500 layer_factory.cpp:58] Creating layer pool3
I0703 15:30:21.882197 74500 net.cpp:84] Creating Layer pool3
I0703 15:30:21.882197 74500 net.cpp:406] pool3 <- conv3
I0703 15:30:21.882197 74500 net.cpp:380] pool3 -> pool3
I0703 15:30:21.882197 74500 net.cpp:122] Setting up pool3
I0703 15:30:21.882197 74500 net.cpp:129] Top shape: 100 64 4 4 (102400)
I0703 15:30:21.882197 74500 net.cpp:137] Memory required for data: 31950000
I0703 15:30:21.882197 74500 layer_factory.cpp:58] Creating layer ip1
I0703 15:30:21.882197 74500 net.cpp:84] Creating Layer ip1
I0703 15:30:21.882197 74500 net.cpp:406] ip1 <- pool3
I0703 15:30:21.882197 74500 net.cpp:380] ip1 -> ip1
I0703 15:30:21.882197 74500 net.cpp:122] Setting up ip1
I0703 15:30:21.897799 74500 net.cpp:129] Top shape: 100 64 (6400)
I0703 15:30:21.897799 74500 net.cpp:137] Memory required for data: 31975600
I0703 15:30:21.897799 74500 layer_factory.cpp:58] Creating layer ip2
I0703 15:30:21.897799 74500 net.cpp:84] Creating Layer ip2
I0703 15:30:21.897799 74500 net.cpp:406] ip2 <- ip1
I0703 15:30:21.897799 74500 net.cpp:380] ip2 -> ip2
I0703 15:30:21.897799 74500 net.cpp:122] Setting up ip2
I0703 15:30:21.897799 74500 net.cpp:129] Top shape: 100 10 (1000)
I0703 15:30:21.897799 74500 net.cpp:137] Memory required for data: 31979600
I0703 15:30:21.897799 74500 layer_factory.cpp:58] Creating layer ip2_ip2_0_split
I0703 15:30:21.897799 74500 net.cpp:84] Creating Layer ip2_ip2_0_split
I0703 15:30:21.897799 74500 net.cpp:406] ip2_ip2_0_split <- ip2
I0703 15:30:21.897799 74500 net.cpp:380] ip2_ip2_0_split -> ip2_ip2_0_split_0
I0703 15:30:21.897799 74500 net.cpp:380] ip2_ip2_0_split -> ip2_ip2_0_split_1
I0703 15:30:21.897799 74500 net.cpp:122] Setting up ip2_ip2_0_split
I0703 15:30:21.897799 74500 net.cpp:129] Top shape: 100 10 (1000)
I0703 15:30:21.897799 74500 net.cpp:129] Top shape: 100 10 (1000)
I0703 15:30:21.897799 74500 net.cpp:137] Memory required for data: 31987600
I0703 15:30:21.897799 74500 layer_factory.cpp:58] Creating layer accuracy
I0703 15:30:21.897799 74500 net.cpp:84] Creating Layer accuracy
I0703 15:30:21.897799 74500 net.cpp:406] accuracy <- ip2_ip2_0_split_0
I0703 15:30:21.897799 74500 net.cpp:406] accuracy <- label_cifar_1_split_0
I0703 15:30:21.897799 74500 net.cpp:380] accuracy -> accuracy
I0703 15:30:21.897799 74500 net.cpp:122] Setting up accuracy
I0703 15:30:21.897799 74500 net.cpp:129] Top shape: (1)
I0703 15:30:21.897799 74500 net.cpp:137] Memory required for data: 31987604
I0703 15:30:21.897799 74500 layer_factory.cpp:58] Creating layer loss
I0703 15:30:21.897799 74500 net.cpp:84] Creating Layer loss
I0703 15:30:21.897799 74500 net.cpp:406] loss <- ip2_ip2_0_split_1
I0703 15:30:21.897799 74500 net.cpp:406] loss <- label_cifar_1_split_1
I0703 15:30:21.897799 74500 net.cpp:380] loss -> loss
I0703 15:30:21.897799 74500 layer_factory.cpp:58] Creating layer loss
I0703 15:30:21.897799 74500 net.cpp:122] Setting up loss
I0703 15:30:21.897799 74500 net.cpp:129] Top shape: (1)
I0703 15:30:21.897799 74500 net.cpp:132] with loss weight 1
I0703 15:30:21.897799 74500 net.cpp:137] Memory required for data: 31987608
I0703 15:30:21.913401 74500 net.cpp:198] loss needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:200] accuracy does not need backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] ip2_ip2_0_split needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] ip2 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] ip1 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] pool3 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] relu3 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] conv3 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] pool2 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] relu2 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] conv2 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] relu1 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] pool1 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:198] conv1 needs backward computation.
I0703 15:30:21.913401 74500 net.cpp:200] label_cifar_1_split does not need backward computation.
I0703 15:30:21.913401 74500 net.cpp:200] cifar does not need backward computation.
I0703 15:30:21.913401 74500 net.cpp:242] This network produces output accuracy
I0703 15:30:21.913401 74500 net.cpp:242] This network produces output loss
I0703 15:30:21.913401 74500 net.cpp:255] Network initialization done.
I0703 15:30:21.913401 74500 solver.cpp:56] Solver scaffolding done.
I0703 15:30:21.913401 74500 caffe.cpp:249] Starting Optimization
I0703 15:30:21.913401 74500 solver.cpp:272] Solving CIFAR10_quick
I0703 15:30:21.913401 74500 solver.cpp:273] Learning Rate Policy: fixed
I0703 15:30:21.913401 74500 solver.cpp:330] Iteration 0, Testing net (#0)
I0703 15:30:22.287849 74500 blocking_queue.cpp:49] Waiting for data
I0703 15:30:23.161561 69056 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:30:23.192765 74500 solver.cpp:397] Test net output #0: accuracy = 0.1001
I0703 15:30:23.192765 74500 solver.cpp:397] Test net output #1: loss = 2.30252 (* 1 = 2.30252 loss)
I0703 15:30:23.223969 74500 solver.cpp:218] Iteration 0 (0 iter/s, 1.31383s/100 iters), loss = 2.30354
I0703 15:30:23.223969 74500 solver.cpp:237] Train net output #0: loss = 2.30354 (* 1 = 2.30354 loss)
I0703 15:30:23.223969 74500 sgd_solver.cpp:105] Iteration 0, lr = 0.001
I0703 15:30:26.796828 74500 solver.cpp:218] Iteration 100 (28.0669 iter/s, 3.56291s/100 iters), loss = 1.86101
I0703 15:30:27.935773 74500 solver.cpp:237] Train net output #0: loss = 1.86101 (* 1 = 1.86101 loss)
I0703 15:30:27.935773 74500 sgd_solver.cpp:105] Iteration 100, lr = 0.001
I0703 15:30:30.860167 74500 solver.cpp:218] Iteration 200 (34.2769 iter/s, 2.91742s/100 iters), loss = 1.70045
I0703 15:30:30.860167 74500 solver.cpp:237] Train net output #0: loss = 1.70045 (* 1 = 1.70045 loss)
I0703 15:30:30.860167 74500 sgd_solver.cpp:105] Iteration 200, lr = 0.001
I0703 15:30:33.818975 74500 solver.cpp:218] Iteration 300 (33.8484 iter/s, 2.95435s/100 iters), loss = 1.28248
I0703 15:30:33.818975 74500 solver.cpp:237] Train net output #0: loss = 1.28248 (* 1 = 1.28248 loss)
I0703 15:30:33.818975 74500 sgd_solver.cpp:105] Iteration 300, lr = 0.001
I0703 15:30:36.720947 74500 solver.cpp:218] Iteration 400 (34.3612 iter/s, 2.91026s/100 iters), loss = 1.3722
I0703 15:30:36.720947 74500 solver.cpp:237] Train net output #0: loss = 1.3722 (* 1 = 1.3722 loss)
I0703 15:30:36.720947 74500 sgd_solver.cpp:105] Iteration 400, lr = 0.001
I0703 15:30:39.498103 69280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:30:39.576113 74500 solver.cpp:330] Iteration 500, Testing net (#0)
I0703 15:30:40.777467 69056 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:30:40.824273 74500 solver.cpp:397] Test net output #0: accuracy = 0.5616
I0703 15:30:40.824273 74500 solver.cpp:397] Test net output #1: loss = 1.25471 (* 1 = 1.25471 loss)
I0703 15:30:40.839875 74500 solver.cpp:218] Iteration 500 (24.2912 iter/s, 4.11672s/100 iters), loss = 1.17465
I0703 15:30:40.855478 74500 solver.cpp:237] Train net output #0: loss = 1.17465 (* 1 = 1.17465 loss)
I0703 15:30:40.855478 74500 sgd_solver.cpp:105] Iteration 500, lr = 0.001
I0703 15:30:43.819857 74500 solver.cpp:218] Iteration 600 (33.6439 iter/s, 2.97231s/100 iters), loss = 1.16408
I0703 15:30:43.819857 74500 solver.cpp:237] Train net output #0: loss = 1.16408 (* 1 = 1.16408 loss)
I0703 15:30:43.819857 74500 sgd_solver.cpp:105] Iteration 600, lr = 0.001
I0703 15:30:46.768635 74500 solver.cpp:218] Iteration 700 (33.907 iter/s, 2.94924s/100 iters), loss = 1.26574
I0703 15:30:46.768635 74500 solver.cpp:237] Train net output #0: loss = 1.26574 (* 1 = 1.26574 loss)
I0703 15:30:46.768635 74500 sgd_solver.cpp:105] Iteration 700, lr = 0.001
I0703 15:30:49.725415 74500 solver.cpp:218] Iteration 800 (33.9314 iter/s, 2.94712s/100 iters), loss = 1.13423
I0703 15:30:49.725415 74500 solver.cpp:237] Train net output #0: loss = 1.13423 (* 1 = 1.13423 loss)
I0703 15:30:49.725415 74500 sgd_solver.cpp:105] Iteration 800, lr = 0.001
I0703 15:30:52.662395 74500 solver.cpp:218] Iteration 900 (34.0415 iter/s, 2.93759s/100 iters), loss = 1.02869
I0703 15:30:52.662395 74500 solver.cpp:237] Train net output #0: loss = 1.02869 (* 1 = 1.02869 loss)
I0703 15:30:52.662395 74500 sgd_solver.cpp:105] Iteration 900, lr = 0.001
I0703 15:30:55.444353 69280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:30:55.553567 74500 solver.cpp:330] Iteration 1000, Testing net (#0)
I0703 15:30:56.676911 69056 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:30:56.708115 74500 solver.cpp:397] Test net output #0: accuracy = 0.6366
I0703 15:30:56.708115 74500 solver.cpp:397] Test net output #1: loss = 1.04947 (* 1 = 1.04947 loss)
I0703 15:30:56.739320 74500 solver.cpp:218] Iteration 1000 (24.5331 iter/s, 4.07612s/100 iters), loss = 1.04028
I0703 15:30:56.739320 74500 solver.cpp:237] Train net output #0: loss = 1.04028 (* 1 = 1.04028 loss)
I0703 15:30:56.739320 74500 sgd_solver.cpp:105] Iteration 1000, lr = 0.001
I0703 15:30:59.672495 74500 solver.cpp:218] Iteration 1100 (34.167 iter/s, 2.9268s/100 iters), loss = 0.953439
I0703 15:30:59.672495 74500 solver.cpp:237] Train net output #0: loss = 0.953439 (* 1 = 0.953439 loss)
I0703 15:30:59.672495 74500 sgd_solver.cpp:105] Iteration 1100, lr = 0.001
I0703 15:31:02.605671 74500 solver.cpp:218] Iteration 1200 (34.1274 iter/s, 2.9302s/100 iters), loss = 1.00336
I0703 15:31:02.605671 74500 solver.cpp:237] Train net output #0: loss = 1.00336 (* 1 = 1.00336 loss)
I0703 15:31:02.605671 74500 sgd_solver.cpp:105] Iteration 1200, lr = 0.001
I0703 15:31:05.539847 74500 solver.cpp:218] Iteration 1300 (34.2007 iter/s, 2.92391s/100 iters), loss = 0.85533
I0703 15:31:05.539847 74500 solver.cpp:237] Train net output #0: loss = 0.85533 (* 1 = 0.85533 loss)
I0703 15:31:05.539847 74500 sgd_solver.cpp:105] Iteration 1300, lr = 0.001
I0703 15:31:08.457422 74500 solver.cpp:218] Iteration 1400 (34.2084 iter/s, 2.92326s/100 iters), loss = 0.914876
I0703 15:31:08.457422 74500 solver.cpp:237] Train net output #0: loss = 0.914876 (* 1 = 0.914876 loss)
I0703 15:31:08.457422 74500 sgd_solver.cpp:105] Iteration 1400, lr = 0.001
I0703 15:31:11.265781 69280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:31:11.359393 74500 solver.cpp:330] Iteration 1500, Testing net (#0)
I0703 15:31:12.498339 69056 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:31:12.545145 74500 solver.cpp:397] Test net output #0: accuracy = 0.6767
I0703 15:31:12.545145 74500 solver.cpp:397] Test net output #1: loss = 0.940117 (* 1 = 0.940117 loss)
I0703 15:31:12.576349 74500 solver.cpp:218] Iteration 1500 (24.3348 iter/s, 4.10933s/100 iters), loss = 0.86222
I0703 15:31:12.576349 74500 solver.cpp:237] Train net output #0: loss = 0.86222 (* 1 = 0.86222 loss)
I0703 15:31:12.576349 74500 sgd_solver.cpp:105] Iteration 1500, lr = 0.001
I0703 15:31:15.525127 74500 solver.cpp:218] Iteration 1600 (33.924 iter/s, 2.94776s/100 iters), loss = 0.885249
I0703 15:31:15.525127 74500 solver.cpp:237] Train net output #0: loss = 0.885249 (* 1 = 0.885249 loss)
I0703 15:31:15.525127 74500 sgd_solver.cpp:105] Iteration 1600, lr = 0.001
I0703 15:31:18.442701 74500 solver.cpp:218] Iteration 1700 (34.2638 iter/s, 2.91853s/100 iters), loss = 0.870494
I0703 15:31:18.442701 74500 solver.cpp:237] Train net output #0: loss = 0.870494 (* 1 = 0.870494 loss)
I0703 15:31:18.442701 74500 sgd_solver.cpp:105] Iteration 1700, lr = 0.001
I0703 15:31:21.393479 74500 solver.cpp:218] Iteration 1800 (33.8911 iter/s, 2.95063s/100 iters), loss = 0.781557
I0703 15:31:21.393479 74500 solver.cpp:237] Train net output #0: loss = 0.781557 (* 1 = 0.781557 loss)
I0703 15:31:21.393479 74500 sgd_solver.cpp:105] Iteration 1800, lr = 0.001
I0703 15:31:24.342257 74500 solver.cpp:218] Iteration 1900 (33.9231 iter/s, 2.94784s/100 iters), loss = 0.864439
I0703 15:31:24.342257 74500 solver.cpp:237] Train net output #0: loss = 0.864439 (* 1 = 0.864439 loss)
I0703 15:31:24.342257 74500 sgd_solver.cpp:105] Iteration 1900, lr = 0.001
I0703 15:31:27.135015 69280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:31:27.228627 74500 solver.cpp:330] Iteration 2000, Testing net (#0)
I0703 15:31:28.351971 69056 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:31:28.383175 74500 solver.cpp:397] Test net output #0: accuracy = 0.7004
I0703 15:31:28.383175 74500 solver.cpp:397] Test net output #1: loss = 0.882688 (* 1 = 0.882688 loss)
I0703 15:31:28.414379 74500 solver.cpp:218] Iteration 2000 (24.6233 iter/s, 4.06119s/100 iters), loss = 0.774207
I0703 15:31:28.414379 74500 solver.cpp:237] Train net output #0: loss = 0.774207 (* 1 = 0.774207 loss)
I0703 15:31:28.414379 74500 sgd_solver.cpp:105] Iteration 2000, lr = 0.001
I0703 15:31:31.331954 74500 solver.cpp:218] Iteration 2100 (34.2834 iter/s, 2.91686s/100 iters), loss = 0.876714
I0703 15:31:31.331954 74500 solver.cpp:237] Train net output #0: loss = 0.876714 (* 1 = 0.876714 loss)
I0703 15:31:31.331954 74500 sgd_solver.cpp:105] Iteration 2100, lr = 0.001
I0703 15:31:34.265130 74500 solver.cpp:218] Iteration 2200 (34.1405 iter/s, 2.92907s/100 iters), loss = 0.769951
I0703 15:31:34.265130 74500 solver.cpp:237] Train net output #0: loss = 0.769951 (* 1 = 0.769951 loss)
I0703 15:31:34.265130 74500 sgd_solver.cpp:105] Iteration 2200, lr = 0.001
I0703 15:31:37.200306 74500 solver.cpp:218] Iteration 2300 (34.0337 iter/s, 2.93826s/100 iters), loss = 0.734565
I0703 15:31:37.200306 74500 solver.cpp:237] Train net output #0: loss = 0.734565 (* 1 = 0.734565 loss)
I0703 15:31:37.200306 74500 sgd_solver.cpp:105] Iteration 2300, lr = 0.001
I0703 15:31:40.143292 74500 solver.cpp:218] Iteration 2400 (34.0256 iter/s, 2.93896s/100 iters), loss = 0.838753
I0703 15:31:40.143292 74500 solver.cpp:237] Train net output #0: loss = 0.838753 (* 1 = 0.838753 loss)
I0703 15:31:40.143292 74500 sgd_solver.cpp:105] Iteration 2400, lr = 0.001
I0703 15:31:42.935456 69280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:31:43.029068 74500 solver.cpp:330] Iteration 2500, Testing net (#0)
I0703 15:31:44.155616 69056 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:31:44.202422 74500 solver.cpp:397] Test net output #0: accuracy = 0.7105
I0703 15:31:44.202422 74500 solver.cpp:397] Test net output #1: loss = 0.857614 (* 1 = 0.857614 loss)
I0703 15:31:44.233626 74500 solver.cpp:218] Iteration 2500 (24.4966 iter/s, 4.0822s/100 iters), loss = 0.727542
I0703 15:31:44.233626 74500 solver.cpp:237] Train net output #0: loss = 0.727542 (* 1 = 0.727542 loss)
I0703 15:31:44.233626 74500 sgd_solver.cpp:105] Iteration 2500, lr = 0.001
I0703 15:31:47.220022 74500 solver.cpp:218] Iteration 2600 (33.5608 iter/s, 2.97967s/100 iters), loss = 0.876518
I0703 15:31:47.220022 74500 solver.cpp:237] Train net output #0: loss = 0.876518 (* 1 = 0.876518 loss)
I0703 15:31:47.220022 74500 sgd_solver.cpp:105] Iteration 2600, lr = 0.001
I0703 15:31:50.185408 74500 solver.cpp:218] Iteration 2700 (33.7071 iter/s, 2.96673s/100 iters), loss = 0.695705
I0703 15:31:50.185408 74500 solver.cpp:237] Train net output #0: loss = 0.695705 (* 1 = 0.695705 loss)
I0703 15:31:50.185408 74500 sgd_solver.cpp:105] Iteration 2700, lr = 0.001
I0703 15:31:53.121584 74500 solver.cpp:218] Iteration 2800 (34.1462 iter/s, 2.92858s/100 iters), loss = 0.645049
I0703 15:31:53.121584 74500 solver.cpp:237] Train net output #0: loss = 0.645049 (* 1 = 0.645049 loss)
I0703 15:31:53.121584 74500 sgd_solver.cpp:105] Iteration 2800, lr = 0.001
I0703 15:31:56.058043 74500 solver.cpp:218] Iteration 2900 (33.7472 iter/s, 2.96321s/100 iters), loss = 0.787643
I0703 15:31:56.059043 74500 solver.cpp:237] Train net output #0: loss = 0.787643 (* 1 = 0.787643 loss)
I0703 15:31:56.059043 74500 sgd_solver.cpp:105] Iteration 2900, lr = 0.001
I0703 15:31:58.852406 69280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:31:58.961619 74500 solver.cpp:330] Iteration 3000, Testing net (#0)
I0703 15:32:00.069361 69056 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:32:00.100565 74500 solver.cpp:397] Test net output #0: accuracy = 0.7166
I0703 15:32:00.100565 74500 solver.cpp:397] Test net output #1: loss = 0.846576 (* 1 = 0.846576 loss)
I0703 15:32:00.131769 74500 solver.cpp:218] Iteration 3000 (24.6666 iter/s, 4.05407s/100 iters), loss = 0.718753
I0703 15:32:00.131769 74500 solver.cpp:237] Train net output #0: loss = 0.718753 (* 1 = 0.718753 loss)
I0703 15:32:00.131769 74500 sgd_solver.cpp:105] Iteration 3000, lr = 0.001
I0703 15:32:03.071969 74500 solver.cpp:218] Iteration 3100 (34.124 iter/s, 2.93049s/100 iters), loss = 0.82852
I0703 15:32:03.071969 74500 solver.cpp:237] Train net output #0: loss = 0.82852 (* 1 = 0.82852 loss)
I0703 15:32:03.071969 74500 sgd_solver.cpp:105] Iteration 3100, lr = 0.001
I0703 15:32:05.989543 74500 solver.cpp:218] Iteration 3200 (34.2588 iter/s, 2.91896s/100 iters), loss = 0.659379
I0703 15:32:05.989543 74500 solver.cpp:237] Train net output #0: loss = 0.659379 (* 1 = 0.659379 loss)
I0703 15:32:05.989543 74500 sgd_solver.cpp:105] Iteration 3200, lr = 0.001
I0703 15:32:08.915119 74500 solver.cpp:218] Iteration 3300 (34.2618 iter/s, 2.9187s/100 iters), loss = 0.602391
I0703 15:32:08.915119 74500 solver.cpp:237] Train net output #0: loss = 0.602391 (* 1 = 0.602391 loss)
I0703 15:32:08.915119 74500 sgd_solver.cpp:105] Iteration 3300, lr = 0.001
I0703 15:32:11.832693 74500 solver.cpp:218] Iteration 3400 (34.3215 iter/s, 2.91363s/100 iters), loss = 0.76891
I0703 15:32:11.832693 74500 solver.cpp:237] Train net output #0: loss = 0.76891 (* 1 = 0.76891 loss)
I0703 15:32:11.832693 74500 sgd_solver.cpp:105] Iteration 3400, lr = 0.001
I0703 15:32:14.625654 69280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:32:14.734869 74500 solver.cpp:330] Iteration 3500, Testing net (#0)
I0703 15:32:15.875815 69056 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:32:15.922621 74500 solver.cpp:397] Test net output #0: accuracy = 0.7107
I0703 15:32:15.922621 74500 solver.cpp:397] Test net output #1: loss = 0.856881 (* 1 = 0.856881 loss)
I0703 15:32:15.953825 74500 solver.cpp:218] Iteration 3500 (24.301 iter/s, 4.11505s/100 iters), loss = 0.70127
I0703 15:32:15.953825 74500 solver.cpp:237] Train net output #0: loss = 0.70127 (* 1 = 0.70127 loss)
I0703 15:32:15.953825 74500 sgd_solver.cpp:105] Iteration 3500, lr = 0.001
I0703 15:32:18.918205 74500 solver.cpp:218] Iteration 3600 (33.7011 iter/s, 2.96727s/100 iters), loss = 0.781694
I0703 15:32:18.918205 74500 solver.cpp:237] Train net output #0: loss = 0.781694 (* 1 = 0.781694 loss)
I0703 15:32:18.918205 74500 sgd_solver.cpp:105] Iteration 3600, lr = 0.001
I0703 15:32:21.916862 74500 solver.cpp:218] Iteration 3700 (33.3442 iter/s, 2.99902s/100 iters), loss = 0.649548
I0703 15:32:21.916862 74500 solver.cpp:237] Train net output #0: loss = 0.649548 (* 1 = 0.649548 loss)
I0703 15:32:21.916862 74500 sgd_solver.cpp:105] Iteration 3700, lr = 0.001
I0703 15:32:24.894482 74500 solver.cpp:218] Iteration 3800 (33.7213 iter/s, 2.96548s/100 iters), loss = 0.556709
I0703 15:32:24.894482 74500 solver.cpp:237] Train net output #0: loss = 0.556709 (* 1 = 0.556709 loss)
I0703 15:32:24.894482 74500 sgd_solver.cpp:105] Iteration 3800, lr = 0.001
I0703 15:32:27.817062 74500 solver.cpp:218] Iteration 3900 (33.928 iter/s, 2.94742s/100 iters), loss = 0.735268
I0703 15:32:27.818063 74500 solver.cpp:237] Train net output #0: loss = 0.735268 (* 1 = 0.735268 loss)
I0703 15:32:27.818063 74500 sgd_solver.cpp:105] Iteration 3900, lr = 0.001
I0703 15:32:30.664855 69280 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:32:30.736066 74500 solver.cpp:447] Snapshotting to binary proto file examples/cifar10/cifar10_quick_iter_4000.caffemodel
I0703 15:32:30.764071 74500 sgd_solver.cpp:273] Snapshotting solver state to binary proto file examples/cifar10/cifar10_quick_iter_4000.solverstate
I0703 15:32:30.779074 74500 solver.cpp:310] Iteration 4000, loss = 0.655316
I0703 15:32:30.780074 74500 solver.cpp:330] Iteration 4000, Testing net (#0)
I0703 15:32:31.939442 69056 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:32:31.970646 74500 solver.cpp:397] Test net output #0: accuracy = 0.7113
I0703 15:32:31.970646 74500 solver.cpp:397] Test net output #1: loss = 0.85738 (* 1 = 0.85738 loss)
I0703 15:32:31.970646 74500 solver.cpp:315] Optimization Done.
I0703 15:32:31.970646 74500 caffe.cpp:260] Optimization Done.
D:\ws_caffe\caffe>
--------------------------------------------------------------------------------------------------------------------------
caffe test -model examples/cifar10/cifar10_quick_train_test.prototxt -weights examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 -iterations 100
I0703 15:36:58.857549 67740 net.cpp:367] relu2 -> conv2 (in-place)
I0703 15:36:58.857549 67740 net.cpp:122] Setting up relu2
I0703 15:36:58.857549 67740 net.cpp:129] Top shape: 100 32 16 16 (819200)
I0703 15:36:58.857549 67740 net.cpp:137] Memory required for data: 27444400
I0703 15:36:58.857549 67740 layer_factory.cpp:58] Creating layer pool2
I0703 15:36:58.857549 67740 net.cpp:84] Creating Layer pool2
I0703 15:36:58.857549 67740 net.cpp:406] pool2 <- conv2
I0703 15:36:58.857549 67740 net.cpp:380] pool2 -> pool2
I0703 15:36:58.857549 67740 net.cpp:122] Setting up pool2
I0703 15:36:58.857549 67740 net.cpp:129] Top shape: 100 32 8 8 (204800)
I0703 15:36:58.857549 67740 net.cpp:137] Memory required for data: 28263600
I0703 15:36:58.857549 67740 layer_factory.cpp:58] Creating layer conv3
I0703 15:36:58.857549 67740 net.cpp:84] Creating Layer conv3
I0703 15:36:58.857549 67740 net.cpp:406] conv3 <- pool2
I0703 15:36:58.857549 67740 net.cpp:380] conv3 -> conv3
I0703 15:36:58.873150 67740 net.cpp:122] Setting up conv3
I0703 15:36:58.873150 67740 net.cpp:129] Top shape: 100 64 8 8 (409600)
I0703 15:36:58.873150 67740 net.cpp:137] Memory required for data: 29902000
I0703 15:36:58.873150 67740 layer_factory.cpp:58] Creating layer relu3
I0703 15:36:58.873150 67740 net.cpp:84] Creating Layer relu3
I0703 15:36:58.873150 67740 net.cpp:406] relu3 <- conv3
I0703 15:36:58.873150 67740 net.cpp:367] relu3 -> conv3 (in-place)
I0703 15:36:58.873150 67740 net.cpp:122] Setting up relu3
I0703 15:36:58.873150 67740 net.cpp:129] Top shape: 100 64 8 8 (409600)
I0703 15:36:58.873150 67740 net.cpp:137] Memory required for data: 31540400
I0703 15:36:58.873150 67740 layer_factory.cpp:58] Creating layer pool3
I0703 15:36:58.873150 67740 net.cpp:84] Creating Layer pool3
I0703 15:36:58.873150 67740 net.cpp:406] pool3 <- conv3
I0703 15:36:58.873150 67740 net.cpp:380] pool3 -> pool3
I0703 15:36:58.873150 67740 net.cpp:122] Setting up pool3
I0703 15:36:58.873150 67740 net.cpp:129] Top shape: 100 64 4 4 (102400)
I0703 15:36:58.873150 67740 net.cpp:137] Memory required for data: 31950000
I0703 15:36:58.873150 67740 layer_factory.cpp:58] Creating layer ip1
I0703 15:36:58.873150 67740 net.cpp:84] Creating Layer ip1
I0703 15:36:58.873150 67740 net.cpp:406] ip1 <- pool3
I0703 15:36:58.873150 67740 net.cpp:380] ip1 -> ip1
I0703 15:36:58.873150 67740 net.cpp:122] Setting up ip1
I0703 15:36:58.888752 67740 net.cpp:129] Top shape: 100 64 (6400)
I0703 15:36:58.888752 67740 net.cpp:137] Memory required for data: 31975600
I0703 15:36:58.888752 67740 layer_factory.cpp:58] Creating layer ip2
I0703 15:36:58.888752 67740 net.cpp:84] Creating Layer ip2
I0703 15:36:58.888752 67740 net.cpp:406] ip2 <- ip1
I0703 15:36:58.888752 67740 net.cpp:380] ip2 -> ip2
I0703 15:36:58.888752 67740 net.cpp:122] Setting up ip2
I0703 15:36:58.888752 67740 net.cpp:129] Top shape: 100 10 (1000)
I0703 15:36:58.888752 67740 net.cpp:137] Memory required for data: 31979600
I0703 15:36:58.888752 67740 layer_factory.cpp:58] Creating layer ip2_ip2_0_split
I0703 15:36:58.888752 67740 net.cpp:84] Creating Layer ip2_ip2_0_split
I0703 15:36:58.888752 67740 net.cpp:406] ip2_ip2_0_split <- ip2
I0703 15:36:58.888752 67740 net.cpp:380] ip2_ip2_0_split -> ip2_ip2_0_split_0
I0703 15:36:58.888752 67740 net.cpp:380] ip2_ip2_0_split -> ip2_ip2_0_split_1
I0703 15:36:58.888752 67740 net.cpp:122] Setting up ip2_ip2_0_split
I0703 15:36:58.888752 67740 net.cpp:129] Top shape: 100 10 (1000)
I0703 15:36:58.888752 67740 net.cpp:129] Top shape: 100 10 (1000)
I0703 15:36:58.888752 67740 net.cpp:137] Memory required for data: 31987600
I0703 15:36:58.888752 67740 layer_factory.cpp:58] Creating layer accuracy
I0703 15:36:58.888752 67740 net.cpp:84] Creating Layer accuracy
I0703 15:36:58.888752 67740 net.cpp:406] accuracy <- ip2_ip2_0_split_0
I0703 15:36:58.888752 67740 net.cpp:406] accuracy <- label_cifar_1_split_0
I0703 15:36:58.888752 67740 net.cpp:380] accuracy -> accuracy
I0703 15:36:58.888752 67740 net.cpp:122] Setting up accuracy
I0703 15:36:58.888752 67740 net.cpp:129] Top shape: (1)
I0703 15:36:58.888752 67740 net.cpp:137] Memory required for data: 31987604
I0703 15:36:58.888752 67740 layer_factory.cpp:58] Creating layer loss
I0703 15:36:58.888752 67740 net.cpp:84] Creating Layer loss
I0703 15:36:58.888752 67740 net.cpp:406] loss <- ip2_ip2_0_split_1
I0703 15:36:58.888752 67740 net.cpp:406] loss <- label_cifar_1_split_1
I0703 15:36:58.888752 67740 net.cpp:380] loss -> loss
I0703 15:36:58.888752 67740 layer_factory.cpp:58] Creating layer loss
I0703 15:36:58.888752 67740 net.cpp:122] Setting up loss
I0703 15:36:58.888752 67740 net.cpp:129] Top shape: (1)
I0703 15:36:58.888752 67740 net.cpp:132] with loss weight 1
I0703 15:36:58.888752 67740 net.cpp:137] Memory required for data: 31987608
I0703 15:36:58.888752 67740 net.cpp:198] loss needs backward computation.
I0703 15:36:58.888752 67740 net.cpp:200] accuracy does not need backward computation.
I0703 15:36:58.888752 67740 net.cpp:198] ip2_ip2_0_split needs backward computation.
I0703 15:36:58.888752 67740 net.cpp:198] ip2 needs backward computation.
I0703 15:36:58.888752 67740 net.cpp:198] ip1 needs backward computation.
I0703 15:36:58.888752 67740 net.cpp:198] pool3 needs backward computation.
I0703 15:36:58.888752 67740 net.cpp:198] relu3 needs backward computation.
I0703 15:36:58.888752 67740 net.cpp:198] conv3 needs backward computation.
I0703 15:36:58.888752 67740 net.cpp:198] pool2 needs backward computation.
I0703 15:36:58.904353 67740 net.cpp:198] relu2 needs backward computation.
I0703 15:36:58.904353 67740 net.cpp:198] conv2 needs backward computation.
I0703 15:36:58.904353 67740 net.cpp:198] relu1 needs backward computation.
I0703 15:36:58.904353 67740 net.cpp:198] pool1 needs backward computation.
I0703 15:36:58.904353 67740 net.cpp:198] conv1 needs backward computation.
I0703 15:36:58.904353 67740 net.cpp:200] label_cifar_1_split does not need backward computation.
I0703 15:36:58.904353 67740 net.cpp:200] cifar does not need backward computation.
I0703 15:36:58.904353 67740 net.cpp:242] This network produces output accuracy
I0703 15:36:58.904353 67740 net.cpp:242] This network produces output loss
I0703 15:36:58.904353 67740 net.cpp:255] Network initialization done.
I0703 15:36:58.951158 67740 hdf5.cpp:32] Datatype class: H5T_FLOAT
I0703 15:36:58.951158 67740 caffe.cpp:291] Running for 100 iterations.
I0703 15:36:59.341192 67740 caffe.cpp:314] Batch 0, accuracy = 0.79
I0703 15:36:59.341192 67740 caffe.cpp:314] Batch 0, loss = 0.650074
I0703 15:36:59.731227 67740 caffe.cpp:314] Batch 1, accuracy = 0.74
I0703 15:36:59.731227 67740 caffe.cpp:314] Batch 1, loss = 0.732871
I0703 15:37:00.105661 67740 caffe.cpp:314] Batch 2, accuracy = 0.75
I0703 15:37:00.105661 67740 caffe.cpp:314] Batch 2, loss = 0.75108
I0703 15:37:00.589304 67740 caffe.cpp:314] Batch 3, accuracy = 0.74
I0703 15:37:00.589304 67740 caffe.cpp:314] Batch 3, loss = 0.827869
I0703 15:37:00.994941 67740 caffe.cpp:314] Batch 4, accuracy = 0.71
I0703 15:37:00.994941 67740 caffe.cpp:314] Batch 4, loss = 0.783882
I0703 15:37:01.306969 67740 caffe.cpp:314] Batch 5, accuracy = 0.8
I0703 15:37:01.306969 67740 caffe.cpp:314] Batch 5, loss = 0.478434
I0703 15:37:01.618998 67740 caffe.cpp:314] Batch 6, accuracy = 0.78
I0703 15:37:01.618998 67740 caffe.cpp:314] Batch 6, loss = 0.629121
I0703 15:37:02.305459 67740 caffe.cpp:314] Batch 7, accuracy = 0.73
I0703 15:37:02.305459 67740 caffe.cpp:314] Batch 7, loss = 0.900917
I0703 15:37:02.617486 67740 caffe.cpp:314] Batch 8, accuracy = 0.75
I0703 15:37:02.617486 67740 caffe.cpp:314] Batch 8, loss = 0.756295
I0703 15:37:02.992920 67740 caffe.cpp:314] Batch 9, accuracy = 0.79
I0703 15:37:02.992920 67740 caffe.cpp:314] Batch 9, loss = 0.72793
I0703 15:37:03.304949 67740 caffe.cpp:314] Batch 10, accuracy = 0.83
I0703 15:37:03.304949 67740 caffe.cpp:314] Batch 10, loss = 0.678172
I0703 15:37:04.005412 67740 caffe.cpp:314] Batch 11, accuracy = 0.75
I0703 15:37:04.005412 67740 caffe.cpp:314] Batch 11, loss = 0.737166
I0703 15:37:04.333041 67740 caffe.cpp:314] Batch 12, accuracy = 0.76
I0703 15:37:04.333041 67740 caffe.cpp:314] Batch 12, loss = 0.590975
I0703 15:37:04.661671 67740 caffe.cpp:314] Batch 13, accuracy = 0.77
I0703 15:37:04.661671 67740 caffe.cpp:314] Batch 13, loss = 0.638049
I0703 15:37:05.136315 67740 caffe.cpp:314] Batch 14, accuracy = 0.77
I0703 15:37:05.136315 67740 caffe.cpp:314] Batch 14, loss = 0.64608
I0703 15:37:05.741775 67740 caffe.cpp:314] Batch 15, accuracy = 0.75
I0703 15:37:05.741775 67740 caffe.cpp:314] Batch 15, loss = 0.745028
I0703 15:37:06.101608 67740 caffe.cpp:314] Batch 16, accuracy = 0.78
I0703 15:37:06.101608 67740 caffe.cpp:314] Batch 16, loss = 0.783791
I0703 15:37:06.430238 67740 caffe.cpp:314] Batch 17, accuracy = 0.77
I0703 15:37:06.430238 67740 caffe.cpp:314] Batch 17, loss = 0.694237
I0703 15:37:06.835873 67740 caffe.cpp:314] Batch 18, accuracy = 0.76
I0703 15:37:06.835873 67740 caffe.cpp:314] Batch 18, loss = 0.8077
I0703 15:37:07.335119 67740 caffe.cpp:314] Batch 19, accuracy = 0.74
I0703 15:37:07.335119 67740 caffe.cpp:314] Batch 19, loss = 0.816296
I0703 15:37:07.647146 67740 caffe.cpp:314] Batch 20, accuracy = 0.76
I0703 15:37:07.647146 67740 caffe.cpp:314] Batch 20, loss = 0.778361
I0703 15:37:07.959174 67740 caffe.cpp:314] Batch 21, accuracy = 0.74
I0703 15:37:07.959174 67740 caffe.cpp:314] Batch 21, loss = 0.733748
I0703 15:37:08.396013 67740 caffe.cpp:314] Batch 22, accuracy = 0.78
I0703 15:37:08.396013 67740 caffe.cpp:314] Batch 22, loss = 0.767683
I0703 15:37:08.942062 67740 caffe.cpp:314] Batch 23, accuracy = 0.72
I0703 15:37:08.942062 67740 caffe.cpp:314] Batch 23, loss = 0.860217
I0703 15:37:09.254091 67740 caffe.cpp:314] Batch 24, accuracy = 0.75
I0703 15:37:09.254091 67740 caffe.cpp:314] Batch 24, loss = 0.902482
I0703 15:37:09.566118 67740 caffe.cpp:314] Batch 25, accuracy = 0.68
I0703 15:37:09.566118 67740 caffe.cpp:314] Batch 25, loss = 1.06045
I0703 15:37:10.065363 67740 caffe.cpp:314] Batch 26, accuracy = 0.81
I0703 15:37:10.065363 67740 caffe.cpp:314] Batch 26, loss = 0.599207
I0703 15:37:10.580209 67740 caffe.cpp:314] Batch 27, accuracy = 0.76
I0703 15:37:10.580209 67740 caffe.cpp:314] Batch 27, loss = 0.750922
I0703 15:37:10.939041 67740 caffe.cpp:314] Batch 28, accuracy = 0.78
I0703 15:37:10.939041 67740 caffe.cpp:314] Batch 28, loss = 0.669347
I0703 15:37:11.251070 67740 caffe.cpp:314] Batch 29, accuracy = 0.8
I0703 15:37:11.251070 67740 caffe.cpp:314] Batch 29, loss = 0.742157
I0703 15:37:11.563097 67740 caffe.cpp:314] Batch 30, accuracy = 0.74
I0703 15:37:11.563097 67740 caffe.cpp:314] Batch 30, loss = 0.699957
I0703 15:37:12.202755 67740 caffe.cpp:314] Batch 31, accuracy = 0.74
I0703 15:37:12.202755 67740 caffe.cpp:314] Batch 31, loss = 0.771317
I0703 15:37:12.514783 67740 caffe.cpp:314] Batch 32, accuracy = 0.77
I0703 15:37:12.514783 67740 caffe.cpp:314] Batch 32, loss = 0.717153
I0703 15:37:12.858013 67740 caffe.cpp:314] Batch 33, accuracy = 0.78
I0703 15:37:12.858013 67740 caffe.cpp:314] Batch 33, loss = 0.695417
I0703 15:37:13.185643 67740 caffe.cpp:314] Batch 34, accuracy = 0.66
I0703 15:37:13.185643 67740 caffe.cpp:314] Batch 34, loss = 1.03245
I0703 15:37:13.794097 67740 caffe.cpp:314] Batch 35, accuracy = 0.78
I0703 15:37:13.794097 67740 caffe.cpp:314] Batch 35, loss = 0.822289
I0703 15:37:14.184132 67740 caffe.cpp:314] Batch 36, accuracy = 0.76
I0703 15:37:14.184132 67740 caffe.cpp:314] Batch 36, loss = 0.775723
I0703 15:37:14.480559 67740 caffe.cpp:314] Batch 37, accuracy = 0.75
I0703 15:37:14.480559 67740 caffe.cpp:314] Batch 37, loss = 0.880586
I0703 15:37:14.776986 67740 caffe.cpp:314] Batch 38, accuracy = 0.74
I0703 15:37:14.776986 67740 caffe.cpp:314] Batch 38, loss = 0.686667
I0703 15:37:15.463448 67740 caffe.cpp:314] Batch 39, accuracy = 0.73
I0703 15:37:15.463448 67740 caffe.cpp:314] Batch 39, loss = 0.649401
I0703 15:37:15.750674 67740 caffe.cpp:314] Batch 40, accuracy = 0.78
I0703 15:37:15.750674 67740 caffe.cpp:314] Batch 40, loss = 0.715338
I0703 15:37:16.156311 67740 caffe.cpp:314] Batch 41, accuracy = 0.79
I0703 15:37:16.156311 67740 caffe.cpp:314] Batch 41, loss = 0.789637
I0703 15:37:16.483939 67740 caffe.cpp:314] Batch 42, accuracy = 0.83
I0703 15:37:16.483939 67740 caffe.cpp:314] Batch 42, loss = 0.512648
I0703 15:37:17.171201 67740 caffe.cpp:314] Batch 43, accuracy = 0.79
I0703 15:37:17.171201 67740 caffe.cpp:314] Batch 43, loss = 0.754063
I0703 15:37:17.527634 67740 caffe.cpp:314] Batch 44, accuracy = 0.84
I0703 15:37:17.527634 67740 caffe.cpp:314] Batch 44, loss = 0.630253
I0703 15:37:17.839663 67740 caffe.cpp:314] Batch 45, accuracy = 0.79
I0703 15:37:17.839663 67740 caffe.cpp:314] Batch 45, loss = 0.799423
I0703 15:37:18.277501 67740 caffe.cpp:314] Batch 46, accuracy = 0.78
I0703 15:37:18.277501 67740 caffe.cpp:314] Batch 46, loss = 0.653652
I0703 15:37:18.745543 67740 caffe.cpp:314] Batch 47, accuracy = 0.77
I0703 15:37:18.745543 67740 caffe.cpp:314] Batch 47, loss = 0.707297
I0703 15:37:19.073173 67740 caffe.cpp:314] Batch 48, accuracy = 0.81
I0703 15:37:19.073173 67740 caffe.cpp:314] Batch 48, loss = 0.565867
I0703 15:37:19.385200 67740 caffe.cpp:314] Batch 49, accuracy = 0.77
I0703 15:37:19.385200 67740 caffe.cpp:314] Batch 49, loss = 0.670153
I0703 15:37:19.697228 67740 caffe.cpp:314] Batch 50, accuracy = 0.77
I0703 15:37:19.697228 67740 caffe.cpp:314] Batch 50, loss = 0.594869
I0703 15:37:20.446095 67740 caffe.cpp:314] Batch 51, accuracy = 0.76
I0703 15:37:20.446095 67740 caffe.cpp:314] Batch 51, loss = 0.700686
I0703 15:37:20.758123 67740 caffe.cpp:314] Batch 52, accuracy = 0.75
I0703 15:37:20.758123 67740 caffe.cpp:314] Batch 52, loss = 0.621944
I0703 15:37:21.101354 67740 caffe.cpp:314] Batch 53, accuracy = 0.72
I0703 15:37:21.101354 67740 caffe.cpp:314] Batch 53, loss = 0.814192
I0703 15:37:21.444586 67740 caffe.cpp:314] Batch 54, accuracy = 0.77
I0703 15:37:21.444586 67740 caffe.cpp:314] Batch 54, loss = 0.692094
I0703 15:37:22.084242 67740 caffe.cpp:314] Batch 55, accuracy = 0.71
I0703 15:37:22.084242 67740 caffe.cpp:314] Batch 55, loss = 0.841092
I0703 15:37:22.396270 67740 caffe.cpp:314] Batch 56, accuracy = 0.76
I0703 15:37:22.396270 67740 caffe.cpp:314] Batch 56, loss = 0.880208
I0703 15:37:22.708298 67740 caffe.cpp:314] Batch 57, accuracy = 0.82
I0703 15:37:22.708298 67740 caffe.cpp:314] Batch 57, loss = 0.565382
I0703 15:37:23.051529 67740 caffe.cpp:314] Batch 58, accuracy = 0.72
I0703 15:37:23.051529 67740 caffe.cpp:314] Batch 58, loss = 0.812194
I0703 15:37:23.691187 67740 caffe.cpp:314] Batch 59, accuracy = 0.76
I0703 15:37:23.691187 67740 caffe.cpp:314] Batch 59, loss = 0.812453
I0703 15:37:24.034417 67740 caffe.cpp:314] Batch 60, accuracy = 0.84
I0703 15:37:24.034417 67740 caffe.cpp:314] Batch 60, loss = 0.606914
I0703 15:37:24.362047 67740 caffe.cpp:314] Batch 61, accuracy = 0.73
I0703 15:37:24.362047 67740 caffe.cpp:314] Batch 61, loss = 0.735381
I0703 15:37:24.705278 67740 caffe.cpp:314] Batch 62, accuracy = 0.77
I0703 15:37:24.705278 67740 caffe.cpp:314] Batch 62, loss = 0.642518
I0703 15:37:25.391739 67740 caffe.cpp:314] Batch 63, accuracy = 0.81
I0703 15:37:25.391739 67740 caffe.cpp:314] Batch 63, loss = 0.617093
I0703 15:37:25.719369 67740 caffe.cpp:314] Batch 64, accuracy = 0.74
I0703 15:37:25.719369 67740 caffe.cpp:314] Batch 64, loss = 0.747036
I0703 15:37:26.109405 67740 caffe.cpp:314] Batch 65, accuracy = 0.76
I0703 15:37:26.109405 67740 caffe.cpp:314] Batch 65, loss = 0.837057
I0703 15:37:26.639852 67740 caffe.cpp:314] Batch 66, accuracy = 0.76
I0703 15:37:26.639852 67740 caffe.cpp:314] Batch 66, loss = 0.689606
I0703 15:37:27.139096 67740 caffe.cpp:314] Batch 67, accuracy = 0.77
I0703 15:37:27.139096 67740 caffe.cpp:314] Batch 67, loss = 0.770931
I0703 15:37:27.451124 67740 caffe.cpp:314] Batch 68, accuracy = 0.75
I0703 15:37:27.451124 67740 caffe.cpp:314] Batch 68, loss = 0.715115
I0703 15:37:27.778753 67740 caffe.cpp:314] Batch 69, accuracy = 0.7
I0703 15:37:27.778753 67740 caffe.cpp:314] Batch 69, loss = 0.947363
I0703 15:37:28.215593 67740 caffe.cpp:314] Batch 70, accuracy = 0.79
I0703 15:37:28.215593 67740 caffe.cpp:314] Batch 70, loss = 0.720477
I0703 15:37:28.699236 67740 caffe.cpp:314] Batch 71, accuracy = 0.81
I0703 15:37:28.699236 67740 caffe.cpp:314] Batch 71, loss = 0.644322
I0703 15:37:29.058068 67740 caffe.cpp:314] Batch 72, accuracy = 0.78
I0703 15:37:29.058068 67740 caffe.cpp:314] Batch 72, loss = 0.576543
I0703 15:37:29.401299 67740 caffe.cpp:314] Batch 73, accuracy = 0.82
I0703 15:37:29.416900 67740 caffe.cpp:314] Batch 73, loss = 0.483146
I0703 15:37:30.243775 67740 caffe.cpp:314] Batch 74, accuracy = 0.77
I0703 15:37:30.243775 67740 caffe.cpp:314] Batch 74, loss = 0.795883
I0703 15:37:30.571404 67740 caffe.cpp:314] Batch 75, accuracy = 0.78
I0703 15:37:30.571404 67740 caffe.cpp:314] Batch 75, loss = 0.626209
I0703 15:37:30.899034 67740 caffe.cpp:314] Batch 76, accuracy = 0.74
I0703 15:37:30.899034 67740 caffe.cpp:314] Batch 76, loss = 0.791658
I0703 15:37:31.242264 67740 caffe.cpp:314] Batch 77, accuracy = 0.78
I0703 15:37:31.242264 67740 caffe.cpp:314] Batch 77, loss = 0.690147
I0703 15:37:31.850719 67740 caffe.cpp:314] Batch 78, accuracy = 0.79
I0703 15:37:31.850719 67740 caffe.cpp:314] Batch 78, loss = 0.64814
I0703 15:37:32.178349 67740 caffe.cpp:314] Batch 79, accuracy = 0.74
I0703 15:37:32.178349 67740 caffe.cpp:314] Batch 79, loss = 0.790071
I0703 15:37:32.505978 67740 caffe.cpp:314] Batch 80, accuracy = 0.73
I0703 15:37:32.505978 67740 caffe.cpp:314] Batch 80, loss = 0.66705
I0703 15:37:32.833607 67740 caffe.cpp:314] Batch 81, accuracy = 0.78
I0703 15:37:32.833607 67740 caffe.cpp:314] Batch 81, loss = 0.601753
I0703 15:37:33.535670 67740 caffe.cpp:314] Batch 82, accuracy = 0.79
I0703 15:37:33.535670 67740 caffe.cpp:314] Batch 82, loss = 0.580124
I0703 15:37:33.847698 67740 caffe.cpp:314] Batch 83, accuracy = 0.74
I0703 15:37:33.847698 67740 caffe.cpp:314] Batch 83, loss = 0.791201
I0703 15:37:34.206531 67740 caffe.cpp:314] Batch 84, accuracy = 0.73
I0703 15:37:34.206531 67740 caffe.cpp:314] Batch 84, loss = 0.912428
I0703 15:37:34.721376 67740 caffe.cpp:314] Batch 85, accuracy = 0.82
I0703 15:37:34.721376 67740 caffe.cpp:314] Batch 85, loss = 0.584871
I0703 15:37:35.251824 67740 caffe.cpp:314] Batch 86, accuracy = 0.77
I0703 15:37:35.251824 67740 caffe.cpp:314] Batch 86, loss = 0.65482
I0703 15:37:35.565852 67740 caffe.cpp:314] Batch 87, accuracy = 0.8
I0703 15:37:35.565852 67740 caffe.cpp:314] Batch 87, loss = 0.684847
I0703 15:37:35.893482 67740 caffe.cpp:314] Batch 88, accuracy = 0.74
I0703 15:37:35.893482 67740 caffe.cpp:314] Batch 88, loss = 0.70748
I0703 15:37:36.706955 67740 caffe.cpp:314] Batch 89, accuracy = 0.78
I0703 15:37:36.706955 67740 caffe.cpp:314] Batch 89, loss = 0.703976
I0703 15:37:37.050186 67740 caffe.cpp:314] Batch 90, accuracy = 0.72
I0703 15:37:37.050186 67740 caffe.cpp:314] Batch 90, loss = 0.78584
I0703 15:37:37.362215 67740 caffe.cpp:314] Batch 91, accuracy = 0.82
I0703 15:37:37.362215 67740 caffe.cpp:314] Batch 91, loss = 0.571601
I0703 15:37:37.736649 67740 caffe.cpp:314] Batch 92, accuracy = 0.71
I0703 15:37:37.736649 67740 caffe.cpp:314] Batch 92, loss = 0.875672
I0703 15:37:38.532320 67740 caffe.cpp:314] Batch 93, accuracy = 0.77
I0703 15:37:38.532320 67740 caffe.cpp:314] Batch 93, loss = 0.780201
I0703 15:37:38.922354 67740 caffe.cpp:314] Batch 94, accuracy = 0.74
I0703 15:37:38.922354 67740 caffe.cpp:314] Batch 94, loss = 0.690553
I0703 15:37:39.546411 67740 caffe.cpp:314] Batch 95, accuracy = 0.82
I0703 15:37:39.546411 67740 caffe.cpp:314] Batch 95, loss = 0.664873
I0703 15:37:39.562011 69448 data_layer.cpp:73] Restarting data prefetching from start.
I0703 15:37:40.061256 67740 caffe.cpp:314] Batch 96, accuracy = 0.75
I0703 15:37:40.061256 67740 caffe.cpp:314] Batch 96, loss = 0.770992
I0703 15:37:40.404487 67740 caffe.cpp:314] Batch 97, accuracy = 0.71
I0703 15:37:40.404487 67740 caffe.cpp:314] Batch 97, loss = 0.847697
I0703 15:37:40.747719 67740 caffe.cpp:314] Batch 98, accuracy = 0.75
I0703 15:37:40.747719 67740 caffe.cpp:314] Batch 98, loss = 0.72742
I0703 15:37:41.090950 67740 caffe.cpp:314] Batch 99, accuracy = 0.75
I0703 15:37:41.090950 67740 caffe.cpp:314] Batch 99, loss = 0.656324
I0703 15:37:41.090950 67740 caffe.cpp:319] Loss: 0.724403
I0703 15:37:41.090950 67740 caffe.cpp:331] accuracy = 0.7643
I0703 15:37:41.090950 67740 caffe.cpp:331] loss = 0.724403 (* 1 = 0.724403 loss)
D:\ws_caffe\caffe>
---------------------------------------------------------------------------------------------------------
本文参考了:http://www.cnblogs.com/tiansha/p/6458366.html
http://blog.csdn.net/zb1165048017/article/details/51476516
在此感谢。
每一个不曾起舞的日子,都是对生命的辜负。
But it is the same with man as with the tree. The more he seeks to rise into the height and light, the more vigorously do his roots struggle earthward, downward, into the dark, the deep - into evil.
其实人跟树是一样的,越是向往高处的阳光,它的根就越要伸向黑暗的地底。----尼采