矩阵的复习回顾
矩阵的转置: AT= (aji) 其中 A= (aij)
矩阵的共轭: (aji) 其中 A= (aij)
//----------------------------------------------------------------------------------------------------
以下转载自:http://fourier.eng.hmc.edu/e161/lectures/klt/node3.html
下文在其基础上添加了解释和说明。
Karhunen-Loeve Transform (KLT)
Now we consider the Karhunen-Loeve Transform (KLT) (also known as Hotelling Transform and Eigenvector Transform), which is closely related to the Principal Component Analysis (PCA) and widely used in data analysis in many fields.
Let be the eigenvector corresponding to the kth eigenvalue
of the covariance matrix
, i.e.,

or in matrix form:
![\begin{displaymath}\left[ \begin{array}{ccc}\cdots &\cdots &\cdots \\
\cdots & ...
...f\phi}_k \end{array} \right]
\;\;\;\;\;\;(k=1,\cdots,N) \end{displaymath}](http://fourier.eng.hmc.edu/e161/lectures/klt/img88.png)
As the covariance matrix
is Hermitian
(symmetric if
is real), its eigenvector
's are orthogonal:
(Hermit矩阵是对称矩阵的推广)

and we can construct an unitary (orthogonal if
is real)
matrix
![\begin{displaymath}{\bf\Phi}\stackrel{\triangle}{=}[{\bf\phi}_1, \cdots,{\bf\phi}_{N}] \end{displaymath}](http://fourier.eng.hmc.edu/e161/lectures/klt/img94.png)
satisfying
(U矩阵是正交矩阵的推广)

The eigenequations above can be combined to be expressed as:

or in matrix form:
![\begin{displaymath}
\left[ \begin{array}{ccc}\ddots &\cdots &\cdots \\
\vdots &...
... & \vdots \\
0 & \cdots & \lambda_{N}
\end{array} \right]
\end{displaymath}](http://fourier.eng.hmc.edu/e161/lectures/klt/img97.png)
Here is a diagonal matrix
. Left multiplying
on both sides,
the covariance matrix
can be diagonalized:

Now, given a signal vector , we can define a unitary (orthogonal if
is real) Karhunen-Loeve Transform of
as:
![\begin{displaymath}
{\bf y}=\left[ \begin{array}{c} y_1 \vdots y_{N} \end{...
...ht]\left[\begin{array}{c}x_1 \vdots, x_N\end{array}\right]
\end{displaymath}](http://fourier.eng.hmc.edu/e161/lectures/klt/img102.png)
where the ith component of the transform vector is the projection of
onto
:

Left multiplying
on both sides of the transform
, we get the inverse transform:
![\begin{displaymath}
{\bf x}={\bf\Phi} {\bf y}=\left[\begin{array}{ccc}&& {\bf...
...dots y_{N} \end{array} \right]
=\sum_{i=1}^{N} y_i \phi_i
\end{displaymath}](http://fourier.eng.hmc.edu/e161/lectures/klt/img108.png)
We see that by this transform, the signal vector is now expressed in an
N-dimensional space spanned by the N eigenvectors
(
)
as the basis vectors of the space.
每一个不曾起舞的日子,都是对生命的辜负。
But it is the same with man as with the tree. The more he seeks to rise into the height and light, the more vigorously do his roots struggle earthward, downward, into the dark, the deep - into evil.
其实人跟树是一样的,越是向往高处的阳光,它的根就越要伸向黑暗的地底。----尼采
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架
2017-04-17 caffe搭建----Visual Studio 2015+CUDA8.0+CUDNN5配置Caffe-windows(BLVC)