[Python之路] 元类(引申 单例模式)
一、类也是对象
当我们定义一个变量或者函数的时候,我们可以在globals()的返回值字典中找到响应的映射:
def A(): print("This is function A") myname = "Leo" print(globals())
我们可以得到以下结果:
{ '__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <_frozen_importlib_external.SourceFileLoader object at 0x0000021F09971CC0>, '__spec__': None, '__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>, '__file__': 'D:/pycharm_project/leo1201/basic_class/test.py', '__cached__': None, 'A': <function A at 0x0000021F099AC1E0>, 'myname': 'Leo' }
我们可以发现我们定义的函数A和变量myname都在这个字典中,这个字典中记录的映射,实际上就是全局变量(也就是可以直接调用的对象)。
那么我们定义的类是什么呢:
class B(object): pass print(globals())
得到的结果:
{ '__name__': '__main__', '__doc__': None, '__package__': None, '__loader__': <_frozen_importlib_external.SourceFileLoader object at 0x0000021F09971CC0>, '__spec__': None, '__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>, '__file__': 'D:/pycharm_project/leo1201/basic_class/test.py', '__cached__': None, 'B': <class '__main__.B'> }
我们可以看到,类B也在该字典中。所以,我们说类实际上也是一个全局对象,只是这个对象的功能可以生成其他的对象而已。
二、内建属性
在上面所看到的globals()返回的字典中,我们并未看到我们常用的print()等直接调用的函数,这是因为这些内建函数都在'__builtin__'中:
global_dict = globals() print(global_dict['__builtins__']) # 打印 <module 'builtins' (built-in)>
我们打印一下__builtin__字典:
global_dict = globals() print(global_dict['__builtins__'].__dict__)
得到一个很长的字典:
{ '__name__': 'builtins', '__doc__': "Built-in functions, exceptions, and other objects.\n\nNoteworthy: None is the `nil' object; Ellipsis represents `...' in slices.", '__package__': '', '__loader__': <class '_frozen_importlib.BuiltinImporter'>, '__spec__': ModuleSpec(name='builtins', loader=<class '_frozen_importlib.BuiltinImporter'>), '__build_class__': <built-in function __build_class__>, '__import__': <built-in function __import__>, 'abs': <built-in function abs>, 'all': <built-in function all>, 'any': <built-in function any>, 'ascii': <built-in function ascii>, 'bin': <built-in function bin>, 'breakpoint': <built-in function breakpoint>, 'callable': <built-in function callable>, 'chr': <built-in function chr>, 'compile': <built-in function compile>, 'delattr': <built-in function delattr>, 'dir': <built-in function dir>, 'divmod': <built-in function divmod>, 'eval': <built-in function eval>, 'exec': <built-in function exec>, 'format': <built-in function format>, 'getattr': <built-in function getattr>, 'globals': <built-in function globals>, 'hasattr': <built-in function hasattr>, 'hash': <built-in function hash>, 'hex': <built-in function hex>, 'id': <built-in function id>, 'input': <built-in function input>, 'isinstance': <built-in function isinstance>, 'issubclass': <built-in function issubclass>, 'iter': <built-in function iter>, 'len': <built-in function len>, 'locals': <built-in function locals>, 'max': <built-in function max>, 'min': <built-in function min>, 'next': <built-in function next>, 'oct': <built-in function oct>, 'ord': <built-in function ord>, 'pow': <built-in function pow>, 'print': <built-in function print>, 'repr': <built-in function repr>, 'round': <built-in function round>, 'setattr': <built-in function setattr>, 'sorted': <built-in function sorted>, 'sum': <built-in function sum>, 'vars': <built-in function vars>, 'None': None, 'Ellipsis': Ellipsis, 'NotImplemented': NotImplemented, 'False': False, 'True': True, 'bool': <class 'bool'>, 'memoryview': <class 'memoryview'>, 'bytearray': <class 'bytearray'>, 'bytes': <class 'bytes'>, 'classmethod': <class 'classmethod'>, 'complex': <class 'complex'>, 'dict': <class 'dict'>, 'enumerate': <class 'enumerate'>, 'filter': <class 'filter'>, 'float': <class 'float'>, 'frozenset': <class 'frozenset'>, 'property': <class 'property'>, 'int': <class 'int'>, 'list': <class 'list'>, 'map': <class 'map'>, 'object': <class 'object'>, 'range': <class 'range'>, 'reversed': <class 'reversed'>, 'set': <class 'set'>, 'slice': <class 'slice'>, 'staticmethod': <class 'staticmethod'>, 'str': <class 'str'>, 'super': <class 'super'>, 'tuple': <class 'tuple'>, 'type': <class 'type'>, 'zip': <class 'zip'>, '__debug__': True, 'BaseException': <class 'BaseException'>, 'Exception': <class 'Exception'>, 'TypeError': <class 'TypeError'>, 'StopAsyncIteration': <class 'StopAsyncIteration'>, 'StopIteration': <class 'StopIteration'>, 'GeneratorExit': <class 'GeneratorExit'>, 'SystemExit': <class 'SystemExit'>, 'KeyboardInterrupt': <class 'KeyboardInterrupt'>, 'ImportError': <class 'ImportError'>, 'ModuleNotFoundError': <class 'ModuleNotFoundError'>, 'OSError': <class 'OSError'>, 'EnvironmentError': <class 'OSError'>, 'IOError': <class 'OSError'>, 'WindowsError': <class 'OSError'>, 'EOFError': <class 'EOFError'>, 'RuntimeError': <class 'RuntimeError'>, 'RecursionError': <class 'RecursionError'>, 'NotImplementedError': <class 'NotImplementedError'>, 'NameError': <class 'NameError'>, 'UnboundLocalError': <class 'UnboundLocalError'>, 'AttributeError': <class 'AttributeError'>, 'SyntaxError': <class 'SyntaxError'>, 'IndentationError': <class 'IndentationError'>, 'TabError': <class 'TabError'>, 'LookupError': <class 'LookupError'>, 'IndexError': <class 'IndexError'>, 'KeyError': <class 'KeyError'>, 'ValueError': <class 'ValueError'>, 'UnicodeError': <class 'UnicodeError'>, 'UnicodeEncodeError': <class 'UnicodeEncodeError'>, 'UnicodeDecodeError': <class 'UnicodeDecodeError'>, 'UnicodeTranslateError': <class 'UnicodeTranslateError'>, 'AssertionError': <class 'AssertionError'>, 'ArithmeticError': <class 'ArithmeticError'>, 'FloatingPointError': <class 'FloatingPointError'>, 'OverflowError': <class 'OverflowError'>, 'ZeroDivisionError': <class 'ZeroDivisionError'>, 'SystemError': <class 'SystemError'>, 'ReferenceError': <class 'ReferenceError'>, 'MemoryError': <class 'MemoryError'>, 'BufferError': <class 'BufferError'>, 'Warning': <class 'Warning'>, 'UserWarning': <class 'UserWarning'>, 'DeprecationWarning': <class 'DeprecationWarning'>, 'PendingDeprecationWarning': <class 'PendingDeprecationWarning'>, 'SyntaxWarning': <class 'SyntaxWarning'>, 'RuntimeWarning': <class 'RuntimeWarning'>, 'FutureWarning': <class 'FutureWarning'>, 'ImportWarning': <class 'ImportWarning'>, 'UnicodeWarning': <class 'UnicodeWarning'>, 'BytesWarning': <class 'BytesWarning'>, 'ResourceWarning': <class 'ResourceWarning'>, 'ConnectionError': <class 'ConnectionError'>, 'BlockingIOError': <class 'BlockingIOError'>, 'BrokenPipeError': <class 'BrokenPipeError'>, 'ChildProcessError': <class 'ChildProcessError'>, 'ConnectionAbortedError': <class 'ConnectionAbortedError'>, 'ConnectionRefusedError': <class 'ConnectionRefusedError'>, 'ConnectionResetError': <class 'ConnectionResetError'>, 'FileExistsError': <class 'FileExistsError'>, 'FileNotFoundError': <class 'FileNotFoundError'>, 'IsADirectoryError': <class 'IsADirectoryError'>, 'NotADirectoryError': <class 'NotADirectoryError'>, 'InterruptedError': <class 'InterruptedError'>, 'PermissionError': <class 'PermissionError'>, 'ProcessLookupError': <class 'ProcessLookupError'>, 'TimeoutError': <class 'TimeoutError'>, 'open': <built-in function open>, 'quit': Use quit() or Ctrl-Z plus Return to exit, 'exit': Use exit() or Ctrl-Z plus Return to exit, 'copyright': Copyright (c) 2001-2018 Python Software Foundation. All Rights Reserved. }
这个字典中包含着python的所有内建功能。我们可以从中找到print()、open()、exit()、False、Bool、dir()等我们常用的内建函数,以及很多异常类。
我们通过使用该字典,可以直接队其中的内建函数进行调用:
global_dict = globals() builtin_dict = global_dict['__builtins__'].__dict__ builtin_dict['print']("Hello Builtin functions") # 打印 Hello Builtin functions
所以,我们平时在使用内建函数的时候,Python实际上就是在这个字典中查找我们调用的函数名是否存在,存在则调用,不存在则报错。
三、元类
我们知道,类可以创建实例对象。从前面我们可以看出,类实际上也是一种对象,那么类是谁的对象呢??答案是元类。
当我们平时在创建类时:
class Test1(): num1 = 100 num2 = 200 help(Test1)
通过help我们可以看到:
class Test1(builtins.object) | Data descriptors defined here: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined) | | ---------------------------------------------------------------------- | Data and other attributes defined here: | | num1 = 100 | | num2 = 200
在Python中,元类就是type类,我们使用type来创建一个普通类:
Test2 = type('Test2', (), {'num1': 100, 'num2': 200}) help(Test2)
通过help可以看到:
class Test2(builtins.object) | Data descriptors defined here: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined) | | ---------------------------------------------------------------------- | Data and other attributes defined here: | | num1 = 100 | | num2 = 200
我们可以看到Test1和Test2基本是一样的。我们在程序中通过class关键字创建类,实际上和type()创建一个类,效果一样。
在 Test2 = type('Test2', (), {'num1': 100, 'num2': 200}) 中,第一个参数是类名,第二个参数是父类,第三个参数是属性和方法(用字典列出)。
这里注意:我们给一个类取名叫"Test2",那么type的返回值我们也应该用"Test2"来接收(当然也可以用其他的名字),如果不一致的话:
Test222 = type('Test2', (), {'num1': 100, 'num2': 200}) help(Test222) t = Test222() # t = Test2() # 报错
但在help中:
class Test2(builtins.object) | Data descriptors defined here: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined) | | ---------------------------------------------------------------------- | Data and other attributes defined here: | | num1 = 100 | | num2 = 200
所以,我们尽量采用一致的名字, 避免出错。
如果一个类继承于Test2:
Test3 = type("Test3", (Test2,), {})
类中的各种成员方法:
def func1(self): print("This is method func1") @classmethod def func2(cls): print("This is class method func2") @staticmethod def func3(): print("This is static method func3") Test2 = type('Test2', (), {"func1": func1, "func2": func2, "func3": func3}) t = Test2() t.func1() Test2.func2() t.func3()
四、元类什么时候用
元类一般很少使用
我们可以自定义元类,并用于创建普通类:
第一种,用函数来修改属性名(在type运行之前):
def upper_attr(class_name, class_parents, class_attr): new_attr = {} for name, value in class_attr.items(): if not name.startswith("__"): new_attr[name.upper()] = value return type(class_name, class_parents, new_attr) class Foo(object, metaclass=upper_attr): bar = 'pig' print(hasattr(Foo, "bar")) # 打印 Flase print(hasattr(Foo, "BAR")) # 打印 True f = Foo() print(f.BAR) # 打印 pig
upper_attr会修改属性的名称为大写,然后再使用type生成一个Foo类。
第二种,定义一个继承于type的元类来创建Foo类:
class UpperAttrMetaClass(type): def __new__(cls, class_name, class_parents, class_attr): print("Here is new") new_attr = {} for name, value in class_attr.items(): if not name.startswith("__"): new_attr[name.upper()] = value return type(class_name, class_parents, new_attr) class Foo(object, metaclass=UpperAttrMetaClass): def __init__(self, abv): self.abv = abv print("Here is init") bar = 'pig' print(hasattr(Foo, "bar")) # 打印 Flase print(hasattr(Foo, "BAR")) # 打印 True f = Foo() print(f.BAR) # 打印 pig
UpperAttrMetaClass继承于type,则他就变成了一个元类,由于元类在创建Foo类时会调用__new__函数,所以,我们在__new__函数中做了一些额外的操作。
五、使用__new__实现单例模式(引申)
既然我们可以在类创建对象之前在__new__中做事情,那么我们可以在__new__中判断这个类是否已经存在实例对象,如果存在则直接返回已存在的对象,如果不存在才创建新的对象,这就实现了单例模式。
# -*- coding: utf-8 -*- import threading class Singleton(object): _lock = threading.Lock() def __new__(cls, *args, **kwargs): if not hasattr(Singleton, "_instance"): with Singleton._lock: # 加锁防止多线程环境中两个线程同时判断到上一行代码为True,同时创建该类的实例 if not hasattr(Singleton, "_instance"): # 调用object类的__new__方法 Singleton._instance = super(Singleton, cls).__new__(cls, *args, **kwargs) return Singleton._instance def test(number): s = Singleton() print str(number) + ": " + str(id(s)) for i in range(10): t = threading.Thread(target=test, args=(i, )) t.start()