题解:AT_abc362_d [ABC362D] Shortest Path 3
一句话题意:给定一个带点权的有权无向连通图,求点 1 到所有其它点的最短路径。
首先,只有 1 一个起点,所以是单源最短路,又因为最大是 \(2 \times 10^5\),所以是优先队列(堆)优化过后的 Dijkstra。
所以,我们只需要解决点权的问题就好了。一种显而易见的想法是把与这条边的边权加上起终点的点权,因为走这条边肯定是要过这两个点的。但这样有个问题:样例都过不了(或许是我写挂了?反正只过了样例 2)!为啥呢?
你从 1 走到 2,再从 2 走到 3,你这点 2 的点权不就算重了?
那该咋办呢?
其实你不用改边权,对 Dijkstra 做一点小改动即可。什么小改动呢?每次走边的时候加上终点的点权,这样子就方便算、判断了。注意不能加起点的,因为起点是固定的,你算它跟没算一样。
比如还是从 1 到 2 再到 3,你每条边再加上点 2、3 的点权,就不会出事了。
但注意此时点 1 的点权还没算,输出是加上就好。
ACCode:
// Problem: D - Shortest Path 3
// Contest: AtCoder - Toyota Programming Contest 2024#7(AtCoder Beginner Contest 362)
// URL: https://atcoder.jp/contests/abc362/tasks/abc362_d
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)
/*Code by Leo2011*/
#include <bits/stdc++.h>
#define log printf
#define EPS 1e-8
#define INF 0x3f3f3f3f3f3f3f3f
#define FOR(i, l, r) for (ll(i) = (l); (i) <= (r); ++(i))
#define IOS \
ios::sync_with_stdio(false); \
cin.tie(nullptr); \
cout.tie(nullptr);
using namespace std;
typedef __int128 i128;
typedef long long ll;
typedef pair<ll, ll> PII;
const ll N = 1e6 + 10;
ll m, n, s, x, y, z, a[N], w[N], to[N], idx, dis[N], nxt[N], head[N];
struct line {
ll u, d;
bool operator<(const line &cmp) const { return d > cmp.d; }
};
priority_queue<line> q;
template <typename T>
inline T read() {
T sum = 0, fl = 1;
char ch = getchar();
for (; !isdigit(ch); ch = getchar())
if (ch == '-') fl = -1;
for (; isdigit(ch); ch = getchar()) sum = sum * 10 + ch - '0';
return sum * fl;
}
template <typename T>
inline void write(T x) {
if (x < 0) putchar('-'), write<T>(-x);
static T sta[35];
ll top = 0;
do { sta[top++] = x % 10, x /= 10; } while (x);
while (top) putchar(sta[--top] + 48);
}
inline void init() {
memset(head, -1, sizeof(head));
memset(dis, 0x3f, sizeof(dis));
}
inline void addEdge(ll u, ll v, ll q) {
w[idx] = q;
to[idx] = v;
nxt[idx] = head[u];
head[u] = idx;
idx++;
}
void dijkstra(ll s) {
dis[s] = 0;
q.push({s, 0});
while (!q.empty()) {
line f = q.top();
q.pop();
ll u = f.u;
if (f.d > dis[u]) continue;
for (ll i = head[u]; i != -1; i = nxt[i]) {
ll v = to[i];
if (dis[u] + w[i] + a[v] < dis[v]) {
dis[v] = dis[u] + w[i] + a[v]; // 把要去的点的点权算上
q.push({v, dis[v]});
}
}
}
}
int main() {
init();
n = read<ll>(), m = read<ll>(), s = 1;
FOR(i, 1, n) a[i] = read<ll>();
FOR(i, 1, m) {
x = read<ll>(), y = read<ll>(), z = read<ll>();
addEdge(x, y, z), addEdge(y, x, z);
}
dijkstra(s);
FOR(i, 2, n)
write<ll>(dis[i] + a[1]), putchar(' '); // 除了起点都有了,所以要加上起点
return 0;
}
理解万岁!