 /**//**************************************************
*
* MemMan 3.0.0.0 beta
*
* Copyright (C) 2007 - 2008 by Len3d
* All rights reserved.
*
*************************************************/

#ifndef __MEMMAN__
#define __MEMMAN__

#include <malloc.h>

#pragma pack(push,1)

 namespace mem {

#define mem_inline __forceinline

#define mem_pool_pad 16
#define mem_page_pad 48
#define mem_page_size ( 1 << 18 )
#define mem_align_size 16
#define mem_align __declspec( align( mem_align_size ) )

typedef unsigned int prior_type;
typedef unsigned long time_type;
typedef unsigned long size_type;
typedef unsigned char byte;

#define mem_max( a, b ) ( ( (a) > (b) ) ? (a) : (b) )
#define mem_min( a, b ) ( ( (a) < (b) ) ? (a) : (b) )

 enum {
ENTRY_PRIORITY = 0,
};

 class heap {
public:
mem_inline heap( size_type max_size )
 {
allocated_size = 0;
available_size = max_size;
}

mem_inline ~heap()
 {
}

mem_inline void *alloc( size_type size )
 {
if( size == 0 )
return NULL;

allocated_size += size;
available_size -= size;

return sys_alloc( size );
}

mem_inline void dealloc( void *ptr, size_type size )
 {
if( ptr && size != 0 )
 {
sys_dealloc( ptr );

allocated_size -= size;
available_size += size;
}
}

mem_inline void *aligned_alloc( size_type size )
 {
if( size == 0 )
return NULL;

allocated_size += size;
available_size -= size;

return sys_aligned_alloc( size );
}

mem_inline void aligned_dealloc( void *ptr, size_type size )
 {
if( ptr && size != 0 )
 {
sys_aligned_dealloc( ptr );

allocated_size -= size;
available_size += size;
}
}

mem_inline size_type available()
 {
return available_size;
}

private:
mem_inline void *sys_alloc( size_type size )
 {
return malloc( size );
}

mem_inline void sys_dealloc( void *ptr )
 {
free( ptr );
}

mem_inline void *sys_aligned_alloc( size_type size )
 {
return _aligned_malloc( size, mem_align_size );
}

mem_inline void sys_aligned_dealloc( void *ptr )
 {
_aligned_free( ptr );
}

private:
size_type allocated_size,
available_size;
};
template < typename ALLOC >
 class pool {
private:
 class page {
public:
mem_inline page( size_type _size, page *old )
 {
base = get_base();
_next = old;
size = _size;
}

mem_inline byte *get_base()
 {
return ( (byte *) this + sizeof(page) );
}

mem_inline size_type get_size()
 {
return static_cast<size_type>( base - get_base() + size );
}

mem_inline size_type available()
 {
return size;
}

mem_inline void *alloc( size_type _size )
 {
byte *ptr = base;
base += _size;
size -= _size;
return ptr;
}

mem_inline page *next()
 {
return _next;
}

private:
 mem_align union {
 struct {
byte *base;
page *_next;
size_type size;
};
byte pad[mem_pool_pad];
};
};

 class chunk {
public:
mem_inline chunk( size_type _size, chunk *old )
 {
next = old;
size = _size;
}

mem_inline size_type available()
 {
return size;
}

public:
chunk *next;
size_type size;
};

public:
mem_inline pool()
 {
pages = NULL;
chunks = NULL;
allocated = 0;
}

mem_inline ~pool()
 {
destory();
}

mem_inline void destory()
 {
page *p;
while( ( p = pages ) != NULL )
 {
pages = p->next();
al.dealloc( p, p->get_size() );
}

pages = NULL;
chunks = NULL;
}

mem_inline bool search_chunk( void * & ptr, size_type size )
 {
if( chunks && ( size <= chunks->available() ) )
 {
ptr = (void *) chunks;
chunks = chunks->next;

return true;
}
else
return false;
}

mem_inline bool search_page( void * & ptr, size_type size )
 {
if( pages && ( size <= pages->available() ) )
 {
ptr = pages->alloc( size );

return true;
}
else
return false;
}

mem_inline void allocate_page( size_type size )
 {
size_type asize = mem_max( size, mem_page_size );

pages = new (al.alloc( sizeof(page) + asize )) page( asize, pages );
}

mem_inline void *alloc( size_type size )
 {
void *ptr;

++ allocated;

if( search_chunk( ptr, size ) )
return ptr;
else if( search_page( ptr, size ) )
return ptr;
 else {
allocate_page( size );
if( search_page( ptr, size ) )
return ptr;
else
return NULL;
}
}

mem_inline void dealloc( void *ptr, size_type size )
 {
-- allocated;

if( size >= sizeof(chunk) )
chunks = new (ptr) chunk( size, chunks );
if( allocated == 0 )
destory();
}

private:
page *pages;
chunk *chunks;
size_type allocated;
ALLOC al;
};

template < typename ALLOC >
 class cache {
public:
class node;

 class entry {
public:
mem_inline entry()
 {
priority = ENTRY_PRIORITY;
last_use_time = pl.get_current_time();
locked = false;
node_ptr = NULL;
}
mem_inline virtual ~entry()
 {
}

mem_inline void *alloc( size_type size )
 {
return pl.alloc( size, this );
}

mem_inline void dealloc( void *ptr, size_type size )
 {
pl.dealloc( ptr, size, this );
}

mem_inline void stream_begin()
 {
locked = true;
stream_in();
last_use_time = pl.get_current_time();
}

mem_inline void stream_end()
 {
locked = false;
}

mem_inline bool is_locked()
 {
return locked;
}

mem_inline bool operator < ( const entry & right ) const
 {
if( priority == right.priority )
return ( last_use_time < right.last_use_time );
else
return ( priority < right.priority );
}

public:
#ifdef _DEBUG
virtual void stream_in() = 0;
#endif

virtual bool stream_out( void * & ptr, size_type size ) = 0;

public:
static cache< ALLOC > pl;
prior_type priority;
time_type last_use_time;
bool locked;
node *node_ptr;
};

 class node {
public:
mem_inline node( entry *obj, node *old, node *g_old, node *phead, node *g_phead )
 {
ptr = obj;
obj->node_ptr = this;
next = old;
prev = phead;
g_next = g_old;
g_prev = g_phead;
if( next )
next->prev = this;
if( prev )
prev->next = this;
if( g_next )
g_next->g_prev = this;
if( g_prev )
g_prev->g_next = this;
}

mem_inline node()
 {
ptr = NULL;
next = NULL;
prev = NULL;
g_next = NULL;
g_prev = NULL;
}

mem_inline ~node()
 {
void *p = NULL;

stream_out( p, 0 );
}

mem_inline time_type get_last_use_time()
 {
if( ptr )
return ptr->last_use_time;
else
return 0;
}

mem_inline bool is_locked()
 {
if( ptr )
return ptr->is_locked();
else
return false;
}

mem_inline bool stream_out( void * & p, size_type size )
 {
if( ptr )
 {
bool bret = ptr->stream_out( p, size );

if( bret )
ptr->node_ptr = NULL;

return bret;
}
else
return false;
}

mem_inline void detach()
 {
if( prev )
prev->next = next;
if( next )
next->prev = prev;
if( g_prev )
g_prev->g_next = g_next;
if( g_next )
g_next->g_prev = g_prev;
}

public:
entry *ptr;
node *next, *prev;
node *g_next, *g_prev;
};

 class page {
public:
mem_inline page( size_type _size, page *old )
 {
size = _size;
base = get_base();
next = old;
prev = NULL;
if( next )
next->prev = this;
num_nodes = 0;
}

mem_inline ~page()
 {
node *p = head.next;

while( p )
 {
head.next = p->next;

p->detach();
delete p;

p = head.next;
}
}

mem_inline void recycle( page *old )
 {
node *p = head.next;

while( p )
 {
head.next = p->next;

p->detach();
delete p;
p = head.next;
}

head.next = NULL;

size = get_size();
base = get_base();
next = old;
prev = NULL;
if( next )
next->prev = this;
num_nodes = 0;
}

mem_inline byte *get_base()
 {
return (byte *) this + sizeof(page);
}

mem_inline size_type get_size()
 {
return static_cast<size_type>( base - get_base() + size );
}

mem_inline size_type available()
 {
return size;
}

mem_inline void *alloc( size_type req_size )
 {
void *ptr = (void *) base;

base += req_size;
size -= req_size;
return ptr;
}

mem_inline time_type priority() const
 {
time_type last_use_time = 0;

node *p = head.next;

while( p )
 {
last_use_time += p->get_last_use_time();

p = p->next;
}

if( num_nodes != 0 )
last_use_time /= static_cast<time_type>( num_nodes );

return last_use_time;
}

mem_inline bool operator < ( const page & right ) const
 {
return ( priority() < right.priority() );
}

public:
 mem_align union {
 struct {
byte *base;
page *next;
page *prev;
size_type size;
node head;
size_type num_nodes;
};
byte pad[mem_page_pad];
};
};
 class chunk {
public:
mem_inline chunk( size_type _size, chunk *old )
 {
size = _size;
next = old;
prev = NULL;
if( next )
next->prev = this;
}

mem_inline size_type available()
 {
return size;
}

public:
chunk *next;
chunk *prev;
size_type size;
};

public:
mem_inline cache()
 {
current_time = 0;
pages = NULL;
chunks = NULL;
allocated = 0;
}

mem_inline ~cache()
 {
destory();
}

mem_inline time_type get_current_time()
 {
return ( ++ current_time );
}

mem_inline void *alloc( size_type size, entry *obj )
 {
void *ptr = NULL;

++ allocated;

obj->node_ptr = NULL;

if( search_chunk( ptr, size ) )
return ptr;
else if( search_page( ptr, size, obj ) )
return ptr;
else if( (size + sizeof(page)) > al.available() )
 {
if( search_entry( ptr, size, obj ) )
return ptr;
else
 {
recycle_page( size );

if( search_page( ptr, size, obj ) )
return ptr;
else
return NULL;
}
}
else
 {
allocate_page( size );

if( search_page( ptr, size, obj ) )
return ptr;
else
return NULL;
}
}

mem_inline void dealloc( void *ptr, size_type size, entry *obj )
 {
-- allocated;

if( obj->node_ptr )
 {
obj->node_ptr->detach();
obj->node_ptr->~node();
node_pool.dealloc( obj->node_ptr, sizeof(node) );
obj->node_ptr = NULL;
}

if( size >= sizeof(chunk) )
chunks = new (ptr) chunk( size, chunks );
if( allocated == 0 )
destory();
}

private:
mem_inline void destory()
 {
page *p = pages;
while( p )
 {
pages = p->next;
p->~page();
al.dealloc( p, p->get_size() );
p = pages;
}

chunks = NULL;
}

mem_inline bool search_chunk( void * & ptr, size_type size )
 {
chunk *p = chunks;
while( p )
 {
if( size <= p->available() )
 {
ptr = (void *) p;
if( p->prev )
p->prev->next = p->next;
if( p->next )
p->next->prev = p->prev;
return true;
}

p = p->next;
}

return false;
}

mem_inline bool search_page( void * & ptr, size_type size, entry *obj )
 {
page *p = pages;
while( p )
 {
if( size <= p->available() )
 {
ptr = p->alloc( size );

new (node_pool.alloc( sizeof(node) )) node( obj, p->head.next, g_head.g_next, &p->head, &g_head );
++ p->num_nodes;
return true;
}

p = p->next;
}

return false;
}

mem_inline node *node_sort( node *p )
 {
return p;
}

mem_inline bool search_entry( void * & ptr, size_type size, entry *obj )
 {
g_head.g_next = node_sort( g_head.g_next );

node *p = g_head.g_next;

while( p )
 {
if( !p->is_locked() && p->stream_out( ptr, size ) )
 {
p->ptr = obj;

obj->node_ptr = p;
return true;
}

p = p->g_next;
}

return false;
}

mem_inline void recycle_page( size_type size )
 {
if( pages )
 {
page *p, *old;

old = pages;
p = pages->next;

while( p )
 {
if( *p < *old )
old = p;

p = p->next;
}

if( old != pages )
 {
if( old->prev )
old->prev->next = old->next;
if( old->next )
old->next->prev = old->prev;

old->recycle( pages );
pages = old;
}
}
}

mem_inline void allocate_page( size_type size )
 {
size_type asize = mem_min( mem_max( sizeof(page) + size, mem_page_size ), al.available() );

pages = new (al.alloc( asize )) page( asize - sizeof(page), pages );
}

private:
time_type current_time;
time_type allocated;
ALLOC al;
node g_head;
page *pages;
chunk *chunks;
pool< ALLOC > node_pool;
};

 class man {
public:
mem_inline man()
 {
m_heap = NULL;

upl = NULL;
apl = NULL;
}

mem_inline ~man()
 {
if( apl )
delete apl;
if( upl )
delete upl;

if( m_heap )
delete m_heap;
}

mem_inline void begin( size_type heap_size )
 {
m_heap = new heap( heap_size );

upl = new pool< allocator >;
apl = new pool< aligned_allocator >;
}

mem_inline void end()
 {
delete apl;
apl = NULL;
delete upl;
upl = NULL;

delete m_heap;
m_heap = NULL;
}

mem_inline void *alloc( size_type size )
 {
return upl->alloc( size );
}

mem_inline void dealloc( void *ptr, size_type size )
 {
return upl->dealloc( ptr, size );
}

mem_inline void *aligned_alloc( size_type size )
 {
return apl->alloc( size );
}

mem_inline void aligned_dealloc( void *ptr, size_type size )
 {
return apl->dealloc( ptr, size );
}

public:
static heap *m_heap;

public:
 class allocator {
public:
mem_inline void *alloc( size_type size )
 {
return m_heap->alloc( size );
}

mem_inline void dealloc( void *ptr, size_type size )
 {
m_heap->dealloc( ptr, size );
}

mem_inline size_type available()
 {
return m_heap->available();
}
};

 class aligned_allocator {
public:
mem_inline void *alloc( size_type size )
 {
return m_heap->aligned_alloc( size );
}

mem_inline void dealloc( void *ptr, size_type size )
 {
m_heap->aligned_dealloc( ptr, size );
}

mem_inline size_type available()
 {
return m_heap->available();
}
};

public:
pool< allocator > *upl;
pool< aligned_allocator > *apl;
};

typedef cache< man::allocator >::entry resource;
typedef cache< man::aligned_allocator >::entry aligned_resource;

} // namespace mem

extern mem::man memman;


#pragma pack(pop)


#endif // __MEMMAN__

|