注意力机制最新综述:A Comprehensive Overview of the Developments in Attention Mechanism
(零)注意力模型(Attention Model)
1)本质:【选择重要的部分】,注意力权重的大小体现选择概率值,以非均匀的方式重点关注感兴趣的部分。
2)注意力机制已成为人工智能的一个重要概念,其在计算机视觉、自然语言处理等众多领域得到了广泛的研究和应用。
3)注意力机制模仿了生物观察行为的内部过程。例如,视觉处理系统倾向于有选择地关注图像某些部分,而忽略其他无关的信息,以一种有助于感知的方式(our visual processing system tends to focus selectively on some parts of the image, while ignoring other irrelevant information in a manner that can assist in perception.)如下图所示。
输入的某些部分比其余部分更重要,这种性质在大多数的任务中是通用和重要的,例如,在机器翻译和摘要任务(machine translation and summarization)中,只有输入序列中的特定单词可能与预测下一个单词有关。同样的,在视觉字幕(image captioning)中,输入图像中某些区域可能对于生成字幕中的下一个单词更重要。
4)注意力机制是上述直觉的具体实现:整合相关部分,使模型动态地仅关注输入的重要部分,从而更有效地实现任务(allowing the model to dynamically pay attention to only certain parts of the input )。
5)了解了注意力的起因和作用后,下面分别介绍:(一)通用注意力模型,(二)不同类型的注意力模型分类,(三)不同架构的注意力模型。
(一)通用注意力模型(Generalized Attention Model)
通用的注意力模型包括两个输入:查询Query (
因此,关于两个输入
s_1, s_2, \ldots,s_i
(
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
2020-01-06 LaTex