Pytorch RNN

0循环神经网络 (Recurrent Neural Network)

 每一步的参数W是固定的

当前隐状态包含了所有前面出现的单词信息

对于RNN,如何训练Train:

①:每一时刻的输出误差Et都有之前所有时刻的隐状态ht有关,因此是求和符号

②:对于隐状态之间的求导,链式法则的使用会出现,WR的连乘,这亦是根据反向传播(链式法则),梯度会不断相乘,很容易梯度消失或者爆炸

训练RNN很难

RNN记忆细胞


LSTM记忆细胞(Long Short-term Memory)

三个门Gate:输入门i;输出门o;遗忘门f

三个输入:输入特征xt,上一时刻的隐状态ht-1, 上一时刻的Memory cell ct-1;

两个输出:但前的节点隐状态ht,和Memory cell ct;

另一种简洁的表示:


Gated Recurrent Unit


 Pytorch中的: nn.RNN(input dim, hidden dim)

x: [seq len, b, word-vec] : b几句话,每句话的单词数为seq len, 每个单词的表示维度为 word vec; x为输入的语料,是整体输入的,不是一个一个输入的;

h0/ht: [num layers, b, h-dim]: RNN的层数num layers, b 为几句话(代表一次处理),h-dim为隐藏层的维度; ht为这句话的最终隐藏层状态;

out: [seq len, b, h-dim]: out为每个单词的隐状态的输出,h0, h1, ...;


Multi-layer RNN:


RNNCell 需要手动的循环

 



import  torch
from    torch import nn
from    torch import optim
from    torch.nn import functional as F


def main():

    rnn = nn.RNN(input_size=100, hidden_size=20, num_layers=1)
    print(rnn)  #  RNN(100, 20)
    x = torch.randn(10, 3, 100)
    out, h = rnn(x, torch.zeros(1, 3, 20))
    print(out.shape, h.shape)  #  torch.Size([10, 3, 20]) torch.Size([1, 3, 20])
  # out: [10, 3, 20] 是所有时刻的隐状态的集合,所以维度和输入的单词个数是一致的,只不过每个隐状态的表示维度为20
  # h: [1, 3, 20] 是最终的隐状态,和RNN的层数和输入的句子有关
rnn
= nn.RNN(input_size=100, hidden_size=20, num_layers=4) print(rnn) # RNN(100, 20, num_layers=4) x = torch.randn(10, 3, 100) out, h = rnn(x, torch.zeros(4, 3, 20)) print(out.shape, h.shape)
# torch.Size([10, 3, 20]) torch.Size([4, 3, 20])
# print(vars(rnn)) print('rnn by cell') cell1 = nn.RNNCell(100, 20) h1 = torch.zeros(3, 20) for xt in x: h1 = cell1(xt, h1) print(h1.shape) cell1 = nn.RNNCell(100, 30) cell2 = nn.RNNCell(30, 20) h1 = torch.zeros(3, 30) h2 = torch.zeros(3, 20) for xt in x: h1 = cell1(xt, h1) h2 = cell2(h1, h2) print(h2.shape) print('Lstm') lstm = nn.LSTM(input_size=100, hidden_size=20, num_layers=4) print(lstm) x = torch.randn(10, 3, 100) out, (h, c) = lstm(x) print(out.shape, h.shape, c.shape)
   # torch.Size([10, 3, 20]) torch.Size([4, 3, 20]) torch.Size([4, 3, 20])
print('one layer lstm') cell = nn.LSTMCell(input_size=100, hidden_size=20) h = torch.zeros(3, 20) c = torch.zeros(3, 20) for xt in x: h, c = cell(xt, [h, c]) print(h.shape, c.shape)
   # torch.Size([3, 20]) torch.Size([3, 20])
print('two layer lstm') cell1 = nn.LSTMCell(input_size=100, hidden_size=30) cell2 = nn.LSTMCell(input_size=30, hidden_size=20) h1 = torch.zeros(3, 30) c1 = torch.zeros(3, 30) h2 = torch.zeros(3, 20) c2 = torch.zeros(3, 20) for xt in x: h1, c1 = cell1(xt, [h1, c1]) h2, c2 = cell2(h1, [h2, c2]) print(h2.shape, c2.shape) if __name__ == '__main__': main()

 情感分类实例:

# -*- coding: utf-8 -*-
"""lstm

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1GX0Rqur8T45MSYhLU9MYWAbycfLH4-Fu
"""

!pip install torch
!pip install torchtext
!python -m spacy download en


# K80 gpu for 12 hours
import torch
from torch import nn, optim
from torchtext import data, datasets

print('GPU:', torch.cuda.is_available())

torch.manual_seed(123)

TEXT = data.Field(tokenize='spacy')
LABEL = data.LabelField(dtype=torch.float)
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)

print('len of train data:', len(train_data))
print('len of test data:', len(test_data))

print(train_data.examples[15].text)
print(train_data.examples[15].label)

# word2vec, glove
TEXT.build_vocab(train_data, max_size=10000, vectors='glove.6B.100d')
LABEL.build_vocab(train_data)


batchsz = 30
device = torch.device('cuda')
train_iterator, test_iterator = data.BucketIterator.splits(
    (train_data, test_data),
    batch_size = batchsz,
    device=device
)

class RNN(nn.Module):
    
    def __init__(self, vocab_size, embedding_dim, hidden_dim):
        """
        """
        super(RNN, self).__init__()
        
        # [0-10001] => [100]
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        # [100] => [256]
        self.rnn = nn.LSTM(embedding_dim, hidden_dim, num_layers=2, 
                           bidirectional=True, dropout=0.5)
        # [256*2] => [1]
        self.fc = nn.Linear(hidden_dim*2, 1)
        self.dropout = nn.Dropout(0.5)
        
        
    def forward(self, x):
        """
        x: [seq_len, b] vs [b, 3, 28, 28]
        """
        # [seq, b, 1] => [seq, b, 100]
        embedding = self.dropout(self.embedding(x))
        
        # output: [seq, b, hid_dim*2]
        # hidden/h: [num_layers*2, b, hid_dim]
        # cell/c: [num_layers*2, b, hid_di]
        output, (hidden, cell) = self.rnn(embedding)
        
        # [num_layers*2, b, hid_dim] => 2 of [b, hid_dim] => [b, hid_dim*2]
        hidden = torch.cat([hidden[-2], hidden[-1]], dim=1)
        
        # [b, hid_dim*2] => [b, 1]
        hidden = self.dropout(hidden)
        out = self.fc(hidden)
        
        return out

rnn = RNN(len(TEXT.vocab), 100, 256)

pretrained_embedding = TEXT.vocab.vectors
print('pretrained_embedding:', pretrained_embedding.shape)
rnn.embedding.weight.data.copy_(pretrained_embedding)
print('embedding layer inited.')

optimizer = optim.Adam(rnn.parameters(), lr=1e-3)
criteon = nn.BCEWithLogitsLoss().to(device)
rnn.to(device)

import numpy as np

def binary_acc(preds, y):
    """
    get accuracy
    """
    preds = torch.round(torch.sigmoid(preds))
    correct = torch.eq(preds, y).float()
    acc = correct.sum() / len(correct)
    return acc

def train(rnn, iterator, optimizer, criteon):
    
    avg_acc = []
    rnn.train()
    
    for i, batch in enumerate(iterator):
        
        # [seq, b] => [b, 1] => [b]
        pred = rnn(batch.text).squeeze(1)
        # 
        loss = criteon(pred, batch.label)
        acc = binary_acc(pred, batch.label).item()
        avg_acc.append(acc)
        
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        
        if i%10 == 0:
            print(i, acc)
        
    avg_acc = np.array(avg_acc).mean()
    print('avg acc:', avg_acc)
    
    
def eval(rnn, iterator, criteon):
    
    avg_acc = []
    
    rnn.eval()
    
    with torch.no_grad():
        for batch in iterator:

            # [b, 1] => [b]
            pred = rnn(batch.text).squeeze(1)

            #
            loss = criteon(pred, batch.label)

            acc = binary_acc(pred, batch.label).item()
            avg_acc.append(acc)
        
    avg_acc = np.array(avg_acc).mean()
    
    print('>>test:', avg_acc)

for epoch in range(10):
    
    eval(rnn, test_iterator, criteon)
    train(rnn, train_iterator, optimizer, criteon)

 

posted @ 2020-08-15 21:36  kkzhang  阅读(1581)  评论(0编辑  收藏  举报