HDU1711-Number Sequence
Number Sequence
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 24460 Accepted Submission(s): 10387
Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M].
If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate
a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output
6 -1
代码:
#include<iostream> #include<cstring> #include<string> #include<cmath> #include<cstdlib> #include<cstdio> using namespace std; const int MAXN=1e6+2; int Next[MAXN]; int t[MAXN],p[MAXN]; int tlen,plen; void getNext() { int j,k; j=0; k=-1; Next[0]=-1; while(j<plen) { if(k==-1||p[j]==p[k]) { j++; k++; Next[j]=k; } else { k=Next[k]; } } } int KMP_Index() { int i=0,j=0; getNext(); while(i<tlen&&j<plen) { if(j==-1||t[i]==p[j]) { i++; j++; } else { j=Next[j]; } } if(j==plen) return i-j+1; return -1; } int KMP_Count() { int ans=0; int i,j=0; if(tlen==1&&plen==1) { if(t[0]==p[0]) return 1; return 0; } getNext(); for(i=0; i<tlen; i++) { while(j>0&&t[i]!=p[j]) j=Next[j]; if(t[i]==p[j]) j++; if(j==plen) { ans++; j=Next[j]; } } return ans; } int main() { int tt; scanf("%d",&tt); while(tt--) { scanf("%d %d",&tlen,&plen); for(int i=0;i<tlen;i++) { scanf("%d",&t[i]); } for(int i=0;i<plen;i++) { scanf("%d",&p[i]); } printf("%d\n",KMP_Index()); //printf("%d\n",KMP_Count()); } return 0; }