Digit Sum II( ABC044&ARC060)
问题 G: Digit Sum II
时间限制: 1 Sec 内存限制: 128 MB提交: 36 解决: 11
[提交][状态][讨论版][命题人:admin]
题目描述
For integers b(b≥2) and n(n≥1), let the function f(b,n) be defined as follows:
·f(b,n)=n, when n<b
·f(b,n)=f(b,floor(n⁄b))+(n mod b), when n≥b
Here, floor(n⁄b) denotes the largest integer not exceeding n⁄b, and n mod b denotes the remainder of n divided by b.
Less formally, f(b,n) is equal to the sum of the digits of n written in base b. For example, the following hold:
·f(10,87654)=8+7+6+5+4=30
·f(100,87654)=8+76+54=138
You are given integers n and s. Determine if there exists an integer b(b≥2) such that f(b,n)=s. If the answer is positive, also find the smallest such b.
Constraints
1≤n≤1011
1≤s≤1011
n,s are integers.
·f(b,n)=n, when n<b
·f(b,n)=f(b,floor(n⁄b))+(n mod b), when n≥b
Here, floor(n⁄b) denotes the largest integer not exceeding n⁄b, and n mod b denotes the remainder of n divided by b.
Less formally, f(b,n) is equal to the sum of the digits of n written in base b. For example, the following hold:
·f(10,87654)=8+7+6+5+4=30
·f(100,87654)=8+76+54=138
You are given integers n and s. Determine if there exists an integer b(b≥2) such that f(b,n)=s. If the answer is positive, also find the smallest such b.
Constraints
1≤n≤1011
1≤s≤1011
n,s are integers.
输入
The input is given from Standard Input in the following format:
n
s
n
s
输出
If there exists an integer b(b≥2) such that f(b,n)=s, print the smallest such b. If such b does not exist, print -1 instead.
样例输入
87654
30
样例输出
10
题意:已知 n,s ,n 转化成b 进制数,且各位数之和为s, 求这个最小的b ,若不存在,输出 -1
c++ code:
#include <bits/stdc++.h> using namespace std; typedef long long ll; ll sum(ll n,ll b) { ll ans=0; while(n) { ans+=n%b; n/=b; } return ans; } int main() { ll n,s; scanf("%lld%lld",&n,&s); if(n==s) printf("%lld\n",n+1); else { for(ll i=2;i<=sqrt(n)+1;i++) { ll b=i; if(sum(n,b)==s) { return 0*printf("%lld\n",b); return 0; } } if(n-s>1) { for(ll i=sqrt(n);i;i--) { ll b=(n-s)/i+1; if(sum(n,b)==s) { printf("%lld\n",b); return 0; } } } puts("-1"); } return 0; }