FFMPEG 实现 YUV,RGB各种图像原始数据之间的转换(swscale)
FFMPEG中的swscale提供了视频原始数据(YUV420,YUV422,YUV444,RGB24...)之间的转换,分辨率变换等操作,使用起来十分方便,在这里记录一下它的用法。
swscale主要用于在2个AVFrame之间进行转换。
下面来看一个视频解码的简单例子,这个程序完成了对"北京移动开发者大会茶歇视频2.flv"(其实就是优酷上的一个普通视频)的解码工作,并将解码后的数据保存为原始数据文件(例如YUV420,YUV422,RGB24等等)。其中略去了很多的代码。
注:完整代码在文章:100行代码实现最简单的基于FFMPEG+SDL的视频播放器
//ffmpeg simple player // //媒资检索系统子系统 // //2013 雷霄骅 leixiaohua1020@126.com //中国传媒大学/数字电视技术 // #include "stdafx.h" int _tmain(int argc, _TCHAR* argv[]) { AVFormatContext *pFormatCtx; int i, videoindex; AVCodecContext *pCodecCtx; AVCodec *pCodec; char filepath[]="北京移动开发者大会茶歇视频2.flv"; av_register_all(); avformat_network_init(); pFormatCtx = avformat_alloc_context(); if(avformat_open_input(&pFormatCtx,filepath,NULL,NULL)!=0){ printf("无法打开文件\n"); return -1; } ...... AVFrame *pFrame,*pFrameYUV; pFrame=avcodec_alloc_frame(); pFrameYUV=avcodec_alloc_frame(); uint8_t *out_buffer; out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height)]; avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height); /* out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_YUV420P, pCodecCtx->width, pCodecCtx->height)]; avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_YUV420P, pCodecCtx->width, pCodecCtx->height);*/ /* out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_UYVY422, pCodecCtx->width, pCodecCtx->height)]; avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_UYVY422, pCodecCtx->width, pCodecCtx->height); out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_YUV422P, pCodecCtx->width, pCodecCtx->height)]; avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_YUV422P, pCodecCtx->width, pCodecCtx->height);*/ ...... FILE *output=fopen("out.rgb","wb+"); //------------------------------ while(av_read_frame(pFormatCtx, packet)>=0) { if(packet->stream_index==videoindex) { ret = avcodec_decode_video2(pCodecCtx, pFrame, &got_picture, packet); if(ret < 0) { printf("解码错误\n"); return -1; } if(got_picture) { /*img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT_UYVY422, SWS_BICUBIC, NULL, NULL, NULL); sws_scale(img_convert_ctx, (const uint8_t* const*)pFrame->data, pFrame->linesize, 0, pCodecCtx->height, pFrameYUV->data, pFrameYUV->linesize); img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT_YUV422P, SWS_BICUBIC, NULL, NULL, NULL); sws_scale(img_convert_ctx, (const uint8_t* const*)pFrame->data, pFrame->linesize, 0, pCodecCtx->height, pFrameYUV->data, pFrameYUV->linesize);*/ //转换 img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT_RGB24, SWS_BICUBIC, NULL, NULL, NULL); sws_scale(img_convert_ctx, (const uint8_t* const*)pFrame->data, pFrame->linesize, 0, pCodecCtx->height, pFrameYUV->data, pFrameYUV->linesize); //RGB fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height)*3,1,output); /* //UYVY fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),2,output); //YUV420P fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),1,output); fwrite(pFrameYUV->data[1],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output); fwrite(pFrameYUV->data[2],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output); */ ...... } } av_free_packet(packet); } fclose(output); ...... return 0; }
从代码中可以看出,解码后的视频帧数据保存在pFrame变量中,然后经过swscale函数转换后,将视频帧数据保存在pFrameYUV变量中。最后将pFrameYUV中的数据写入成文件。
在本代码中,将数据保存成了RGB24的格式。如果想保存成其他格式,比如YUV420,YUV422等,需要做2个步骤:
1.初始化pFrameYUV的时候,设定想要转换的格式:
AVFrame *pFrame,*pFrameYUV; pFrame=avcodec_alloc_frame(); pFrameYUV=avcodec_alloc_frame(); uint8_t *out_buffer; out_buffer=new uint8_t[avpicture_get_size(PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height)]; avpicture_fill((AVPicture *)pFrameYUV, out_buffer, PIX_FMT_RGB24, pCodecCtx->width, pCodecCtx->height);只需要把PIX_FMT_***改了就可以了
2.在sws_getContext()中更改想要转换的格式:
img_convert_ctx = sws_getContext(pCodecCtx->width, pCodecCtx->height, pCodecCtx->pix_fmt, pCodecCtx->width, pCodecCtx->height, PIX_FMT_RGB24, SWS_BICUBIC, NULL, NULL, NULL);也是把PIX_FMT_***改了就可以了
最后,如果想将转换后的原始数据存成文件,只需要将pFrameYUV的data指针指向的数据写入文件就可以了。
例如,保存YUV420P格式的数据,用以下代码:
fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),1,output); fwrite(pFrameYUV->data[1],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output); fwrite(pFrameYUV->data[2],(pCodecCtx->width)*(pCodecCtx->height)/4,1,output);
保存RGB24格式的数据,用以下代码:
fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height)*3,1,output);
保存UYVY格式的数据,用以下代码:
fwrite(pFrameYUV->data[0],(pCodecCtx->width)*(pCodecCtx->height),2,output);
在这里又有一个问题,YUV420P格式需要写入data[0],data[1],data[2];而RGB24,UYVY格式却仅仅是写入data[0],他们的区别到底是什么呢?经过研究发现,在FFMPEG中,图像原始数据包括两种:planar和packed。planar就是将几个分量分开存,比如YUV420中,data[0]专门存Y,data[1]专门存U,data[2]专门存V。而packed则是打包存,所有数据都存在data[0]中。
具体哪个格式是planar,哪个格式是packed,可以查看pixfmt.h文件。注:有些格式名称后面是LE或BE,分别对应little-endian或big-endian。另外名字后面有P的是planar格式。
/* 雷霄骅 * 中国传媒大学/数字电视技术 * leixiaohua1020@126.com * */ /* * copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at> * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef AVUTIL_PIXFMT_H #define AVUTIL_PIXFMT_H /** * @file * pixel format definitions * */ #include "libavutil/avconfig.h" /** * Pixel format. * * @note * PIX_FMT_RGB32 is handled in an endian-specific manner. An RGBA * color is put together as: * (A << 24) | (R << 16) | (G << 8) | B * This is stored as BGRA on little-endian CPU architectures and ARGB on * big-endian CPUs. * * @par * When the pixel format is palettized RGB (PIX_FMT_PAL8), the palettized * image data is stored in AVFrame.data[0]. The palette is transported in * AVFrame.data[1], is 1024 bytes long (256 4-byte entries) and is * formatted the same as in PIX_FMT_RGB32 described above (i.e., it is * also endian-specific). Note also that the individual RGB palette * components stored in AVFrame.data[1] should be in the range 0..255. * This is important as many custom PAL8 video codecs that were designed * to run on the IBM VGA graphics adapter use 6-bit palette components. * * @par * For all the 8bit per pixel formats, an RGB32 palette is in data[1] like * for pal8. This palette is filled in automatically by the function * allocating the picture. * * @note * make sure that all newly added big endian formats have pix_fmt&1==1 * and that all newly added little endian formats have pix_fmt&1==0 * this allows simpler detection of big vs little endian. */ enum PixelFormat { PIX_FMT_NONE= -1, PIX_FMT_YUV420P, ///< planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples) PIX_FMT_YUYV422, ///< packed YUV 4:2:2, 16bpp, Y0 Cb Y1 Cr PIX_FMT_RGB24, ///< packed RGB 8:8:8, 24bpp, RGBRGB... PIX_FMT_BGR24, ///< packed RGB 8:8:8, 24bpp, BGRBGR... PIX_FMT_YUV422P, ///< planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples) PIX_FMT_YUV444P, ///< planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples) PIX_FMT_YUV410P, ///< planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples) PIX_FMT_YUV411P, ///< planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) PIX_FMT_GRAY8, ///< Y , 8bpp PIX_FMT_MONOWHITE, ///< Y , 1bpp, 0 is white, 1 is black, in each byte pixels are ordered from the msb to the lsb PIX_FMT_MONOBLACK, ///< Y , 1bpp, 0 is black, 1 is white, in each byte pixels are ordered from the msb to the lsb PIX_FMT_PAL8, ///< 8 bit with PIX_FMT_RGB32 palette PIX_FMT_YUVJ420P, ///< planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV420P and setting color_range PIX_FMT_YUVJ422P, ///< planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV422P and setting color_range PIX_FMT_YUVJ444P, ///< planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of PIX_FMT_YUV444P and setting color_range PIX_FMT_XVMC_MPEG2_MC,///< XVideo Motion Acceleration via common packet passing PIX_FMT_XVMC_MPEG2_IDCT, PIX_FMT_UYVY422, ///< packed YUV 4:2:2, 16bpp, Cb Y0 Cr Y1 PIX_FMT_UYYVYY411, ///< packed YUV 4:1:1, 12bpp, Cb Y0 Y1 Cr Y2 Y3 PIX_FMT_BGR8, ///< packed RGB 3:3:2, 8bpp, (msb)2B 3G 3R(lsb) PIX_FMT_BGR4, ///< packed RGB 1:2:1 bitstream, 4bpp, (msb)1B 2G 1R(lsb), a byte contains two pixels, the first pixel in the byte is the one composed by the 4 msb bits PIX_FMT_BGR4_BYTE, ///< packed RGB 1:2:1, 8bpp, (msb)1B 2G 1R(lsb) PIX_FMT_RGB8, ///< packed RGB 3:3:2, 8bpp, (msb)2R 3G 3B(lsb) PIX_FMT_RGB4, ///< packed RGB 1:2:1 bitstream, 4bpp, (msb)1R 2G 1B(lsb), a byte contains two pixels, the first pixel in the byte is the one composed by the 4 msb bits PIX_FMT_RGB4_BYTE, ///< packed RGB 1:2:1, 8bpp, (msb)1R 2G 1B(lsb) PIX_FMT_NV12, ///< planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (first byte U and the following byte V) PIX_FMT_NV21, ///< as above, but U and V bytes are swapped PIX_FMT_ARGB, ///< packed ARGB 8:8:8:8, 32bpp, ARGBARGB... PIX_FMT_RGBA, ///< packed RGBA 8:8:8:8, 32bpp, RGBARGBA... PIX_FMT_ABGR, ///< packed ABGR 8:8:8:8, 32bpp, ABGRABGR... PIX_FMT_BGRA, ///< packed BGRA 8:8:8:8, 32bpp, BGRABGRA... PIX_FMT_GRAY16BE, ///< Y , 16bpp, big-endian PIX_FMT_GRAY16LE, ///< Y , 16bpp, little-endian PIX_FMT_YUV440P, ///< planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples) PIX_FMT_YUVJ440P, ///< planar YUV 4:4:0 full scale (JPEG), deprecated in favor of PIX_FMT_YUV440P and setting color_range PIX_FMT_YUVA420P, ///< planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples) PIX_FMT_VDPAU_H264,///< H.264 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers PIX_FMT_VDPAU_MPEG1,///< MPEG-1 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers PIX_FMT_VDPAU_MPEG2,///< MPEG-2 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers PIX_FMT_VDPAU_WMV3,///< WMV3 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers PIX_FMT_VDPAU_VC1, ///< VC-1 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers PIX_FMT_RGB48BE, ///< packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as big-endian PIX_FMT_RGB48LE, ///< packed RGB 16:16:16, 48bpp, 16R, 16G, 16B, the 2-byte value for each R/G/B component is stored as little-endian PIX_FMT_RGB565BE, ///< packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), big-endian PIX_FMT_RGB565LE, ///< packed RGB 5:6:5, 16bpp, (msb) 5R 6G 5B(lsb), little-endian PIX_FMT_RGB555BE, ///< packed RGB 5:5:5, 16bpp, (msb)1A 5R 5G 5B(lsb), big-endian, most significant bit to 0 PIX_FMT_RGB555LE, ///< packed RGB 5:5:5, 16bpp, (msb)1A 5R 5G 5B(lsb), little-endian, most significant bit to 0 PIX_FMT_BGR565BE, ///< packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), big-endian PIX_FMT_BGR565LE, ///< packed BGR 5:6:5, 16bpp, (msb) 5B 6G 5R(lsb), little-endian PIX_FMT_BGR555BE, ///< packed BGR 5:5:5, 16bpp, (msb)1A 5B 5G 5R(lsb), big-endian, most significant bit to 1 PIX_FMT_BGR555LE, ///< packed BGR 5:5:5, 16bpp, (msb)1A 5B 5G 5R(lsb), little-endian, most significant bit to 1 PIX_FMT_VAAPI_MOCO, ///< HW acceleration through VA API at motion compensation entry-point, Picture.data[3] contains a vaapi_render_state struct which contains macroblocks as well as various fields extracted from headers PIX_FMT_VAAPI_IDCT, ///< HW acceleration through VA API at IDCT entry-point, Picture.data[3] contains a vaapi_render_state struct which contains fields extracted from headers PIX_FMT_VAAPI_VLD, ///< HW decoding through VA API, Picture.data[3] contains a vaapi_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers PIX_FMT_YUV420P16LE, ///< planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian PIX_FMT_YUV420P16BE, ///< planar YUV 4:2:0, 24bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian PIX_FMT_YUV422P16LE, ///< planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian PIX_FMT_YUV422P16BE, ///< planar YUV 4:2:2, 32bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian PIX_FMT_YUV444P16LE, ///< planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian PIX_FMT_YUV444P16BE, ///< planar YUV 4:4:4, 48bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian PIX_FMT_VDPAU_MPEG4, ///< MPEG4 HW decoding with VDPAU, data[0] contains a vdpau_render_state struct which contains the bitstream of the slices as well as various fields extracted from headers PIX_FMT_DXVA2_VLD, ///< HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer PIX_FMT_RGB444LE, ///< packed RGB 4:4:4, 16bpp, (msb)4A 4R 4G 4B(lsb), little-endian, most significant bits to 0 PIX_FMT_RGB444BE, ///< packed RGB 4:4:4, 16bpp, (msb)4A 4R 4G 4B(lsb), big-endian, most significant bits to 0 PIX_FMT_BGR444LE, ///< packed BGR 4:4:4, 16bpp, (msb)4A 4B 4G 4R(lsb), little-endian, most significant bits to 1 PIX_FMT_BGR444BE, ///< packed BGR 4:4:4, 16bpp, (msb)4A 4B 4G 4R(lsb), big-endian, most significant bits to 1 PIX_FMT_GRAY8A, ///< 8bit gray, 8bit alpha PIX_FMT_BGR48BE, ///< packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as big-endian PIX_FMT_BGR48LE, ///< packed RGB 16:16:16, 48bpp, 16B, 16G, 16R, the 2-byte value for each R/G/B component is stored as little-endian //the following 10 formats have the disadvantage of needing 1 format for each bit depth, thus //If you want to support multiple bit depths, then using PIX_FMT_YUV420P16* with the bpp stored seperately //is better PIX_FMT_YUV420P9BE, ///< planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian PIX_FMT_YUV420P9LE, ///< planar YUV 4:2:0, 13.5bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian PIX_FMT_YUV420P10BE,///< planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), big-endian PIX_FMT_YUV420P10LE,///< planar YUV 4:2:0, 15bpp, (1 Cr & Cb sample per 2x2 Y samples), little-endian PIX_FMT_YUV422P10BE,///< planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian PIX_FMT_YUV422P10LE,///< planar YUV 4:2:2, 20bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian PIX_FMT_YUV444P9BE, ///< planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian PIX_FMT_YUV444P9LE, ///< planar YUV 4:4:4, 27bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian PIX_FMT_YUV444P10BE,///< planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), big-endian PIX_FMT_YUV444P10LE,///< planar YUV 4:4:4, 30bpp, (1 Cr & Cb sample per 1x1 Y samples), little-endian PIX_FMT_YUV422P9BE, ///< planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), big-endian PIX_FMT_YUV422P9LE, ///< planar YUV 4:2:2, 18bpp, (1 Cr & Cb sample per 2x1 Y samples), little-endian PIX_FMT_VDA_VLD, ///< hardware decoding through VDA #ifdef AV_PIX_FMT_ABI_GIT_MASTER PIX_FMT_RGBA64BE, ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as big-endian PIX_FMT_RGBA64LE, ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian PIX_FMT_BGRA64BE, ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as big-endian PIX_FMT_BGRA64LE, ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian #endif PIX_FMT_GBRP, ///< planar GBR 4:4:4 24bpp PIX_FMT_GBRP9BE, ///< planar GBR 4:4:4 27bpp, big endian PIX_FMT_GBRP9LE, ///< planar GBR 4:4:4 27bpp, little endian PIX_FMT_GBRP10BE, ///< planar GBR 4:4:4 30bpp, big endian PIX_FMT_GBRP10LE, ///< planar GBR 4:4:4 30bpp, little endian PIX_FMT_GBRP16BE, ///< planar GBR 4:4:4 48bpp, big endian PIX_FMT_GBRP16LE, ///< planar GBR 4:4:4 48bpp, little endian #ifndef AV_PIX_FMT_ABI_GIT_MASTER PIX_FMT_RGBA64BE=0x123, ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as big-endian PIX_FMT_RGBA64LE, ///< packed RGBA 16:16:16:16, 64bpp, 16R, 16G, 16B, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian PIX_FMT_BGRA64BE, ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as big-endian PIX_FMT_BGRA64LE, ///< packed RGBA 16:16:16:16, 64bpp, 16B, 16G, 16R, 16A, the 2-byte value for each R/G/B/A component is stored as little-endian #endif PIX_FMT_0RGB=0x123+4, ///< packed RGB 8:8:8, 32bpp, 0RGB0RGB... PIX_FMT_RGB0, ///< packed RGB 8:8:8, 32bpp, RGB0RGB0... PIX_FMT_0BGR, ///< packed BGR 8:8:8, 32bpp, 0BGR0BGR... PIX_FMT_BGR0, ///< packed BGR 8:8:8, 32bpp, BGR0BGR0... PIX_FMT_YUVA444P, ///< planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples) PIX_FMT_NB, ///< number of pixel formats, DO NOT USE THIS if you want to link with shared libav* because the number of formats might differ between versions }; #define PIX_FMT_Y400A PIX_FMT_GRAY8A #define PIX_FMT_GBR24P PIX_FMT_GBRP #if AV_HAVE_BIGENDIAN # define PIX_FMT_NE(be, le) PIX_FMT_##be #else # define PIX_FMT_NE(be, le) PIX_FMT_##le #endif #define PIX_FMT_RGB32 PIX_FMT_NE(ARGB, BGRA) #define PIX_FMT_RGB32_1 PIX_FMT_NE(RGBA, ABGR) #define PIX_FMT_BGR32 PIX_FMT_NE(ABGR, RGBA) #define PIX_FMT_BGR32_1 PIX_FMT_NE(BGRA, ARGB) #define PIX_FMT_0RGB32 PIX_FMT_NE(0RGB, BGR0) #define PIX_FMT_0BGR32 PIX_FMT_NE(0BGR, RGB0) #define PIX_FMT_GRAY16 PIX_FMT_NE(GRAY16BE, GRAY16LE) #define PIX_FMT_RGB48 PIX_FMT_NE(RGB48BE, RGB48LE) #define PIX_FMT_RGB565 PIX_FMT_NE(RGB565BE, RGB565LE) #define PIX_FMT_RGB555 PIX_FMT_NE(RGB555BE, RGB555LE) #define PIX_FMT_RGB444 PIX_FMT_NE(RGB444BE, RGB444LE) #define PIX_FMT_BGR48 PIX_FMT_NE(BGR48BE, BGR48LE) #define PIX_FMT_BGR565 PIX_FMT_NE(BGR565BE, BGR565LE) #define PIX_FMT_BGR555 PIX_FMT_NE(BGR555BE, BGR555LE) #define PIX_FMT_BGR444 PIX_FMT_NE(BGR444BE, BGR444LE) #define PIX_FMT_YUV420P9 PIX_FMT_NE(YUV420P9BE , YUV420P9LE) #define PIX_FMT_YUV422P9 PIX_FMT_NE(YUV422P9BE , YUV422P9LE) #define PIX_FMT_YUV444P9 PIX_FMT_NE(YUV444P9BE , YUV444P9LE) #define PIX_FMT_YUV420P10 PIX_FMT_NE(YUV420P10BE, YUV420P10LE) #define PIX_FMT_YUV422P10 PIX_FMT_NE(YUV422P10BE, YUV422P10LE) #define PIX_FMT_YUV444P10 PIX_FMT_NE(YUV444P10BE, YUV444P10LE) #define PIX_FMT_YUV420P16 PIX_FMT_NE(YUV420P16BE, YUV420P16LE) #define PIX_FMT_YUV422P16 PIX_FMT_NE(YUV422P16BE, YUV422P16LE) #define PIX_FMT_YUV444P16 PIX_FMT_NE(YUV444P16BE, YUV444P16LE) #define PIX_FMT_RGBA64 PIX_FMT_NE(RGBA64BE, RGBA64LE) #define PIX_FMT_BGRA64 PIX_FMT_NE(BGRA64BE, BGRA64LE) #define PIX_FMT_GBRP9 PIX_FMT_NE(GBRP9BE , GBRP9LE) #define PIX_FMT_GBRP10 PIX_FMT_NE(GBRP10BE, GBRP10LE) #define PIX_FMT_GBRP16 PIX_FMT_NE(GBRP16BE, GBRP16LE) #endif /* AVUTIL_PIXFMT_H */