OpenCV 使用光流法检测物体运动
OpenCV 可以使用光流法检测物体运动,贴上代码以及效果。
// opticalflow.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" // Example 10-1. Pyramid Lucas-Kanade optical flow code // /* *************** License:************************** Oct. 3, 2008 Right to use this code in any way you want without warrenty, support or any guarentee of it working. BOOK: It would be nice if you cited it: Learning OpenCV: Computer Vision with the OpenCV Library by Gary Bradski and Adrian Kaehler Published by O'Reilly Media, October 3, 2008 AVAILABLE AT: http://www.amazon.com/Learning-OpenCV-Computer-Vision-Library/dp/0596516134 Or: http://oreilly.com/catalog/9780596516130/ ISBN-10: 0596516134 or: ISBN-13: 978-0596516130 OTHER OPENCV SITES: * The source code is on sourceforge at: http://sourceforge.net/projects/opencvlibrary/ * The OpenCV wiki page (As of Oct 1, 2008 this is down for changing over servers, but should come back): http://opencvlibrary.sourceforge.net/ * An active user group is at: http://tech.groups.yahoo.com/group/OpenCV/ * The minutes of weekly OpenCV development meetings are at: http://pr.willowgarage.com/wiki/OpenCV ************************************************** */ #include <cv.h> #include <cxcore.h> #include <highgui.h> #include <stdio.h> const int MAX_CORNERS = 500; int main(int argc, char** argv) { // Initialize, load two images from the file system, and // allocate the images and other structures we will need for // results. // IplImage* imgA = cvLoadImage("OpticalFlow0.jpg",CV_LOAD_IMAGE_GRAYSCALE); IplImage* imgB = cvLoadImage("OpticalFlow1.jpg",CV_LOAD_IMAGE_GRAYSCALE); CvSize img_sz = cvGetSize( imgA ); int win_size = 10; IplImage* imgC = cvLoadImage("OpticalFlow1.jpg",CV_LOAD_IMAGE_UNCHANGED); // The first thing we need to do is get the features // we want to track. // IplImage* eig_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 ); IplImage* tmp_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 ); int corner_count = MAX_CORNERS; CvPoint2D32f* cornersA = new CvPoint2D32f[ MAX_CORNERS ]; cvGoodFeaturesToTrack( imgA, eig_image, tmp_image, cornersA, &corner_count, 0.01, 5.0, 0, 3, 0, 0.04 ); cvFindCornerSubPix( imgA, cornersA, corner_count, cvSize(win_size,win_size), cvSize(-1,-1), cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03) ); // Call the Lucas Kanade algorithm // char features_found[ MAX_CORNERS ]; float feature_errors[ MAX_CORNERS ]; CvSize pyr_sz = cvSize( imgA->width+8, imgB->height/3 ); IplImage* pyrA = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 ); IplImage* pyrB = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 ); CvPoint2D32f* cornersB = new CvPoint2D32f[ MAX_CORNERS ]; cvCalcOpticalFlowPyrLK( imgA, imgB, pyrA, pyrB, cornersA, cornersB, corner_count, cvSize( win_size,win_size ), 5, features_found, feature_errors, cvTermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3 ), 0 ); // Now make some image of what we are looking at: // for( int i=0; i<corner_count; i++ ) { if( features_found[i]==0|| feature_errors[i]>550 ) { // printf("Error is %f/n",feature_errors[i]); continue; } // printf("Got it/n"); CvPoint p0 = cvPoint( cvRound( cornersA[i].x ), cvRound( cornersA[i].y ) ); CvPoint p1 = cvPoint( cvRound( cornersB[i].x ), cvRound( cornersB[i].y ) ); cvLine( imgC, p0, p1, CV_RGB(255,0,0),2 ); } cvNamedWindow("ImageA",0); cvNamedWindow("ImageB",0); cvNamedWindow("LKpyr_OpticalFlow",0); cvShowImage("ImageA",imgA); cvShowImage("ImageB",imgB); cvShowImage("LKpyr_OpticalFlow",imgC); cvWaitKey(0); return 0; }
两张测试图片:
OpticalFlow0.jpg
OpticalFlow1.jpg
运行结果: