CentOS 7 Zookeeper 和 Kafka 集群搭建

环境

  • CentOS 7.4
  • Zookeeper-3.6.1
  • Kafka_2.13-2.4.1
  • Kafka-manager-2.0.0.2

本次安装的软件全部在 /home/javateam 目录下。

Zookeeper 集群搭建

  1. 添加三台机器的 hosts,使用 vim /etc/hosts 命令添加以下内容:
192.168.30.78 node-78
192.168.30.79 node-79
192.168.30.80 node-80
  1. 首先解压缩:
tar -zxvf apache-zookeeper-3.6.1-bin.tar.gz

修改文件夹名称:

mv apache-zookeeper-3.6.1-bin.tar.gz zookeeper
  1. /etc/profile 配置文件添加以下内容,并执行source /etc/profile命令使配置生效:
export ZOOKEEPER_HOME=/home/javateam/zookeeper
export PATH=$PATH:$ZOOKEEPER_HOME/bin
  1. 在上面配置文件中 dataDir 的目录下创建一个 myid 文件,并写入一个数值,比如0。myid 文件里存放的是服务器的编号。
  2. 修改zookeeper配置文件。首先进入 $ZOOKEEPER_HOME/conf 目录,复制一份 zoo_sample.cfg 并将名称修改为 zoo.cfg:
# zookeeper服务器心跳时间,单位为ms
tickTime=2000
# 投票选举新leader的初始化时间
initLimit=10
# leader与follower心跳检测最大容忍时间,响应超过 syncLimit * tickTime,leader认为follower死掉,从服务器列表删除follower
syncLimit=5
# 数据目录
dataDir=/home/javateam/zookeeper/data/
# 日志目录
dataLogDir=/home/javateam/zookeeper/logs/
# 对外服务的端口
clientPort=2181
# 集群ip配置
server.78=node-78:2888:3888
server.79=node-79:2888:3888
server.80=node-80:2888:3888

注意: 上面配置文件中的数据目录和日志目录需自行去创建对应的文件夹。这里server后的数字,与myid文件中的id是一致的。

  1. zookeeper启动会占用三个端口,分别的作用是:
2181:对cline端提供服务
3888:选举leader使用
2888:集群内机器通讯使用(Leader监听此端口)

记得使用以下命令开启防火墙端口,并重启防火墙:

firewall-cmd --zone=public --add-port=2181/tcp --permanent
firewall-cmd --zone=public --add-port=3888/tcp --permanent
firewall-cmd --zone=public --add-port=2888/tcp --permanent
firewall-cmd --reload
  1. 然后用 zkServer.sh start 分别启动三台机器上的zookeeper,启动后用 zkServer.sh status 查看状态,如下图所以有一个leader两个follower即代表成功:

WeChatfc81462212a55ba049b1afa06c9fabef.png

WeChat4d789c67638c5fc635fb2cc149d218c2.png

WeChatbfe38654fcccfcb45aba87c0fd2a4d58.png

Kafka 集群搭建

  1. 首先解压缩:
tar -zxvf kafka_2.13-2.4.1.tgz
  1. 改文件夹名称:
mv kafka_2.13-2.4.1.tgz kafka
  1. /etc/profile 配置文件添加以下内容,并执行source /etc/profile命令使配置生效:
export KAFKA_HOME=/home/javateam/kafka
export PATH=$PATH:$KAFKA_HOME/bin
  1. JVM级别参数调优,修改 kafka/bin/kafka-server-start.sh,添加以下内容:
# 调整堆大小,默认1G太小了
export KAFKA_HEAP_OPTS="-Xmx6G -Xms6G"
# 选用G1垃圾收集器
export KAFKA_JVM_PERFORMANCE_OPTS="-server -XX:+UseG1GC -XX:MaxGCPauseMillis=20 -XX:InitiatingHeapOccupancyPercent=35 -XX:+ExplicitGCInvokesConcurrent -Djava.awt.headless=true"
# 指定JMX暴露端口
export JMX_PORT="8999"

添加后,文件内容如下图所示:

WeChat9d9de8b4d35d8483d8920db2bd98f524.png

  1. 操作系统级别参数调优,增加文件描述符的限制,使用 vim /etc/security/limits.conf 添加以下内容:
*  soft  nofile  100000
*  hard  nofile  100000
*  soft  nproc   65535
*  hard  nproc   65535
  1. 修改kafka的配置文件 $KAFKA_HOME/conf/server.properties,如下:
############################# Server Basics #############################

# 每一个broker在集群中的唯一标示,要求是正数。在改变IP地址,不改变broker.id的话不会影响consumers
broker.id=78

############################# Socket Server Settings #############################

# 提供给客户端响应的地址和端口
listeners=PLAINTEXT://node-78:9092

# broker 处理消息的最大线程数
num.network.threads=3

# broker处理磁盘IO的线程数 ,数值应该大于你的硬盘数
num.io.threads=8

# socket的发送缓冲区大小
socket.send.buffer.bytes=102400

# socket的接收缓冲区,socket的调优参数SO_SNDBUFF
socket.receive.buffer.bytes=102400

# socket请求的最大数值,防止serverOOM,message.max.bytes必然要小于socket.request.max.bytes,会被topic创建时的指定参数覆盖
socket.request.max.bytes=104857600


############################# Log Basics #############################

# kafka数据的存放地址,多个地址的话用逗号分割
log.dirs=/home/javateam/kafka/logs

# 每个topic的分区个数,若是在topic创建时候没有指定的话会被topic创建时的指定参数覆盖
num.partitions=3

# 每个分区的副本数
replication.factor=2

# 我们知道segment文件默认会被保留7天的时间,超时的话就会被清理,那么清理这件事情就需要有一些线程来做。这里就是用来设置恢复和清理data下数据的线程数量
num.recovery.threads.per.data.dir=1

############################# Internal Topic Settings  #############################
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1

############################# Log Flush Policy #############################

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000

############################# Log Retention Policy #############################

# 控制一条消息数据被保存多长时间,默认是7天
log.retention.hours=168

# 指定Broker为消息保存的总磁盘容量大小,-1代表不限制
log.retention.bytes=-1

# Broker能处理的最大消息大小,默认976KB(1000012),此处改为100MB
message.max.bytes=104857600

# 日志文件中每个segment的大小,默认为1G
log.segment.bytes=1073741824

#上面的参数设置了每一个segment文件的大小是1G,那么就需要有一个东西去定期检查segment文件有没有达到1G,多长时间去检查一次,就需要设置一个周期性检查文件大小的时间(单位是毫秒)。
log.retention.check.interval.ms=300000

############################# Zookeeper #############################

# 消费者集群通过连接Zookeeper来找到broker。zookeeper连接服务器地址
zookeeper.connect=node-78:2181,node-79:2181,node-80:2181

# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=6000


############################# Group Coordinator Settings #############################

# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0


############################# Broker Settings #############################

# 不让落后太多的副本竞选Leader
unclean.leader.election.enable=false

# 关闭kafka定期对一些topic分区进行Leader重选举
auto.leader.rebalance.enable=false
  1. 编写kafka启动脚本,vim startup.sh 内容如下所示:
# 进程守护模式启动kafka
kafka-server-start.sh -daemon /home/javateam/kafka/config/server.properties
  1. 编写kafka停止脚本,vim shutdown.sh 内容如下所示:
# 停止kafka服务
kafka-server-stop.sh
  1. 用如下命令,分别启动kafka服务:
sh /home/javateam/kafka/startup.sh

注意:后面的路径换成你自己脚本所在的路径。

  1. 启动成功后,连接zookeeper查看节点 ids 信息:
zkCli.sh -server 127.0.0.1:2181
ls /brokers/ids

如下图所示,代表集群搭建成功:

WeChatc5943d73fa0fd92c1a66962147af7afd.png

Kafka-manager 搭建

  1. 首先解压缩:
unzip kafka-manager-2.0.0.2.zip
  1. 改文件夹名称
mv kafka-manager-2.0.0.2.zip kafka-manager
  1. 修改配置文件 kafka-manager/conf/application.conf,把里面的 kafka-manager.zkhosts 换成你自己的zookeeper 集群地址就好了,例如:kafka-manager.zkhosts="node-78:2181,node-79:2181,node-80:2181"
  2. 编写 kafka-manager 启动脚本,vim startup.sh 内容如下:
nohup /home/javateam/kafka-manager/bin/kafka-manager -Dhttp.port=9000 > /home/javateam/kafka-manager/nohup.out 2>&1 &
  1. 使用 sh /home/javateam/kafka-manager/startup.sh 启动 kafka-manager,然后访问9000端口,如下图所示代表成功:

WeChatcf5d42bbb563a7b23864ed6755ce9c0d.png

不知道怎么使用的话就去 google,这里不再赘述。

posted @ 2020-05-18 22:55  leisurexi  阅读(365)  评论(0编辑  收藏  举报