Type I and type II errors | 第一类错误和第二类错误

偶尔能看懂,但是死活记不住,归根结底是没有彻底理解!

Type I and type II errors - wiki

type I error is the rejection of a true nullhypothesis (also known as a "false positive" finding), 

type II error is failing to reject a false null hypothesis (also known as a "false negative" finding). 1-power。

大部分举例都没有讲清楚,必须要结合下面的图才能有直观的理解。

 

power就是当统计量服从备择假设时,我们得到备择假设的概率。

我们要构建零假设,这就是我们要攻击的目标,我们需要使用我们的数据来拒绝它。

常见的做法是我们需要构建统计量,在H0的假设下,统计量往往有一个分布,当我们计算出统计量处于分布的小概率区域中时,我们就可以说零假设是小概率事件,可以拒绝零假设。

如下图的单侧假设检验,当统计量大于2时,我们就可以拒绝H0,此时我们犯第一类错误地概率就是α,就是零假设是真的,我们却拒绝了它。

当设定了显著性水平后,α就定了,一般为0.05,所以统计量水平也就定了,下图为2. 第二类错误就是,即使没有达到拒绝H0的标准(统计量小于2),但是其实H1是真的,我们却拒绝了它。定义为β。也可以叫做我们接受了错误地H0。

 

结论:

第一类错误:错误地拒绝了H0

第二类错误:错误地拒绝了H1,换句话说,错误地接受了H0,接受了假的H0,真的很绕口,但是确实一个东西。

与wiki定义完美吻合!!!

 

这之后,Sensitivity, Specificity, and ROC Curves就很好理解了。

 

posted @   Life·Intelligence  阅读(32338)  评论(0编辑  收藏  举报
(评论功能已被禁用)
编辑推荐:
· 一个奇形怪状的面试题:Bean中的CHM要不要加volatile?
· [.NET]调用本地 Deepseek 模型
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· .NET Core 托管堆内存泄露/CPU异常的常见思路
· PostgreSQL 和 SQL Server 在统计信息维护中的关键差异
阅读排行:
· DeepSeek “源神”启动!「GitHub 热点速览」
· 我与微信审核的“相爱相杀”看个人小程序副业
· 微软正式发布.NET 10 Preview 1:开启下一代开发框架新篇章
· 如何使用 Uni-app 实现视频聊天(源码,支持安卓、iOS)
· C# 集成 DeepSeek 模型实现 AI 私有化(本地部署与 API 调用教程)
TOP
点击右上角即可分享
微信分享提示