哈希表(Hash Table)

参考:

Hash table - Wiki

Hash table_百度百科

从头到尾彻底解析Hash表算法

谈谈 Hash Table

我们身边的哈希,最常见的就是perl和python里面的字典了,字典有什么性质,给定键就可以直接找到值,字典封装了一种映射关系(散列函数),它和数组完全不同,数组是根据地址来访问值。

定义:给定表M,存在函数f(key),对任意给定的关键字值key,代入函数后若能得到包含该关键字的记录在表中的地址,则称表M为哈希(Hash)表,函数f(key)为哈希(Hash) 函数。

这个世界上没有十全十美的东西,所以我们要学会取舍。任何技术的实现都没有最好的只要最合适的,也就说实现的最佳方案是和应用场景息息相关的。
很多时候,我们想对数据进行快速的存取(比如缓存的实现),并用一个key来标记自己存取的数据。我们可以把它叫做key-value的结构。
说到“快速”我们很快想到数组,因为数组可以在O(1)的时间复杂内完成指定位置元素的读写操作。
所以在理想状态,如果一个数组足够长,且存在一个函数可以将每一个key映射到唯一的一个数组下标,那么我们就可以很完美的解决问题。但往往资源都是有限的,我们没有那么大的空间,也不能设计一个无比负责的映射算法保证每一个key对应到一个唯一的数组下标。所以我们会选择一些折中的方案。

hash table便是为解决这类问题而存在的。

posted @   Life·Intelligence  阅读(257)  评论(0编辑  收藏  举报
(评论功能已被禁用)
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
TOP
点击右上角即可分享
微信分享提示