graph-tool 练习

  • 如何使用graph-tool模块,如何导入?如何使用graph,使用其算法?
  • 如何使用Boost Graph库,安装,测试?

1 创建和操纵图

  • 如何创建空图?
    g = Graph()

  • 如何精准的创建有向图和无向图?
    ug = Graph(directed=False)

  • 如何切换有向和无向?
    ug.set_directed(False)

  • 如何查询图的有向和无向属性?
    assert(ug.is_directed() == False)

  • 如何通过一个已有的图创建新图?
    g1 = Graph()
    g2 = Graph(g1)

  • 如何添加顶点?
    v1 = g.add_vertex()
    v2 = g.add_vertex()

  • 如何创建边?
    e = g.add_edge(v1, v2)

  • 如何浏览显示已有的图?
    graph_draw(g, vertex_text=g.vertex_index, vertex_font_size=18,output_size=(200, 200), output="two-nodes.png")

  • 如何获得顶点的出度?
    print(v1.out_degree())

  • 怎么返回一条边的source和target?
    print(e.source(), e.target())

  • 如何创建顶点,创建指定数量的顶点?
    vlist = g.add_vertex(10)
    print(len(list(vlist)))

  • 如何获得顶点的索引?
    v = g.add_vertex()
    print(g.vertex_index[v])
    print(int(v))

  • 怎么将顶点和边删除?fast == True选项如何使用?set_fast_edge_removal()如何使用?
    g.remove_edge(e)
    g.remove_vertex(v2)

  • 如何通过索引获得顶点?
    v = g.vertex(8)

  • 如何通过索引获得边?
    g.add_edge(g.vertex(2), g.vertex(3))
    e = g.edge(2, 3)

  • 如何显示边的索引?
    e = g.add_edge(g.vertex(0), g.vertex(1))
    print(g.edge_index[e])

1.1 遍历顶点和边

1.1.1 遍历所有顶点或边

  • 如何遍历图所有的顶点或边?
    vertices()
    edges()
for v in g.vertices():
    print(v)
for e in g.edges():
    print(e)

1.1.2 遍历一个顶点的neighbourhood

  • 如何遍历顶点的出/入边以及出/入邻接点
    out_edges()
    in_edges()
    out_neighbours()
    in_neighbours()
from itertools import izip
for v in g.vertices():
for e in v.out_edges():
    print(e)
for w in v.out_neighbours():
    print(w)

# the edge and neighbours order always match
for e,w in izip(v.out_edges(), v.out_neighbours()):
    assert(e.target() == w)

2 属性映射

  • 什么是属性映射?有哪几种类型?由哪个类操作?属性映射的值得类型有哪几种?
    一种将额外信息与顶点、边或图本身相关联的方式。
    顶点、边和图。
    PropertyMap类
    bool、int16_t、int32_t、int64_t、double、long double、string、vector bool
    vector uint8_t、vector int16_t、vector int32_t、vector int64_t、vector double
    vector long double、vector string、python::object

  • 如何为图创建新的属性映射?
    new_vertex_property()
    new_edge_property()
    new_graph_property()

  • 如何访问属性映射?
    通过顶点或边的描述符或图本身,来访问该值(属性映射描述符[顶点、边或图])
    vprop_double = g.new_vertex_property("double") 顶点的属性映射
    vprop_double[g.vertex(10)] = 3.1416
    .
    vprop_vint = g.new_vertex_property("vector<int>") 顶点的属性映射
    vprop_vint[g.vertex(40)] = [1, 3, 42, 54]
    .
    eprop_dict = g.new_edge_property("object") 边的属性映射
    eprop_dict[g.edges().next()] = {"foo": "bar", "gnu": 42}
    .
    gprop_bool = g.new_graph_property("bool") 图的属性映射
    gprop_bool[g] = True

  • 属性映射访问的其他形式?
    vprop_double.get_array()[:] = random(g.num_vertices()) get_array()方法
    vprop_double.a = random(g.num_vertices()) a属性

2.1 内部属性映射

  • 什么是内部属性映射?
    被复制并和图一起被保存到一个文件,属性被内在化

  • 怎么使用内部属性映射?
    属性映射必须有一个唯一的名称,相当于一个类型,可以产生具体的实例,即具体的属性
    vertex_properties vp
    edge_properties ep
    graph_properties gp

  • 区分类型,名字和值!!!

>>> gprop = g.new_graph_property("int")  #定义了一个类型
>>> g.graph_properties["foo"] = gprop   # 定义了一个变量
>>> g.graph_properties["foo"] = 42      # 为变量赋了一个值
>>> print(g.graph_properties["foo"])   #输出变量的值
42
>>> del g.graph_properties["foo"]       # 删除了定义过的变量
  • 如何通过属性访问属性映射?
>>> vprop = g.new_vertex_property("double")
>>> g.vp.foo = vprop    # 等价于g.vertex_properties["foo"] = vprop
>>> v = g.vertex(0)
>>> g.vp.foo[v] = 3.14  #等价于v.vertex_properties["foo"] = 3.14
>>> print(g.vp.foo[v])
3.14

图的I/O

  • 图保存和加载的四种格式?
    graphml、dot、gml和gt

  • 图从文件保存和加载的方法,从磁盘加载的方法?
    save()
    load()
    load_graph()
    .

g = Graph()
g.save("my_graph.xml.gz")
g2 = load_graph("my_graph.xml.gz")

.
pickle模块

一个例子:构建一个 Price网络

  • 如何看懂Price网络的代码?
#! /usr/bin/env python

# We will need some things from several places
from __future__ import division, absolute_import, print_function
import sys
if sys.version_info < (3,):
    range = xrange
import os
from pylab import *  # for plotting
from numpy.random import *  # for random sampling
seed(42)

# We need to import the graph_tool module itself
from graph_tool.all import *

# let's construct a Price network (the one that existed before Barabasi). It is
# a directed network, with preferential attachment. The algorithm below is
# very naive, and a bit slow, but quite simple.

# We start with an empty, directed graph
g = Graph()

# We want also to keep the age information for each vertex and edge. For that
# let's create some property maps
v_age = g.new_vertex_property("int")
e_age = g.new_edge_property("int")

# The final size of the network
N = 100000

# We have to start with one vertex
v = g.add_vertex()
v_age[v] = 0

# we will keep a list of the vertices. The number of times a vertex is in this
# list will give the probability of it being selected.
vlist = [v]

# let's now add the new edges and vertices
for i in range(1, N):
    # create our new vertex
    v = g.add_vertex()
    v_age[v] = i

    # we need to sample a new vertex to be the target, based on its in-degree +
    # 1. For that, we simply randomly sample it from vlist.
    i = randint(0, len(vlist))
    target = vlist[i]

    # add edge
    e = g.add_edge(v, target)
    e_age[e] = i

    # put v and target in the list
    vlist.append(target)
    vlist.append(v)

# now we have a graph!

# let's do a random walk on the graph and print the age of the vertices we find,
# just for fun.

v = g.vertex(randint(0, g.num_vertices()))
while True:
    print("vertex:", int(v), "in-degree:", v.in_degree(), "out-degree:",
          v.out_degree(), "age:", v_age[v])

    if v.out_degree() == 0:
        print("Nowhere else to go... We found the main hub!")
        break

    n_list = []
    for w in v.out_neighbours():
        n_list.append(w)
    v = n_list[randint(0, len(n_list))]

# let's save our graph for posterity. We want to save the age properties as
# well... To do this, they must become "internal" properties:

g.vertex_properties["age"] = v_age
g.edge_properties["age"] = e_age

# now we can save it
g.save("price.xml.gz")


# Let's plot its in-degree distribution
in_hist = vertex_hist(g, "in")

y = in_hist[0]
err = sqrt(in_hist[0])
err[err >= y] = y[err >= y] - 1e-2

figure(figsize=(6,4))
errorbar(in_hist[1][:-1], in_hist[0], fmt="o", yerr=err,
        label="in")
gca().set_yscale("log")
gca().set_xscale("log")
gca().set_ylim(1e-1, 1e5)
gca().set_xlim(0.8, 1e3)
subplots_adjust(left=0.2, bottom=0.2)
xlabel("$k_{in}$")
ylabel("$NP(k_{in})$")
tight_layout()
savefig("price-deg-dist.pdf")
savefig("price-deg-dist.png")
posted @ 2016-06-09 23:19  Life·Intelligence  阅读(950)  评论(0编辑  收藏  举报
TOP