全基因组测序流程 | WGS pipeline
创建conda环境,安装必要软件
conda create -n wgs
conda activate wgs
conda install bioconda::bwa
下载最佳ref fasta
gcloud storage cp gs://BUCKET_NAME/OBJECT_NAME SAVE_TO_LOCATION
gs://gcp-public-data--broad-references/hg38/v0/Homo_sapiens_assembly38.fasta
https://console.cloud.google.com/storage/browser/genomics-public-data/resources/broad/hg38/v0/
构建索引【可以直接下载,broad有标准流程】
../refdata-gex-GRCh38-2020-A/fasta/genome.fa
bwa index -p GRCh38 hg38.fasta
/home/zz950/reference/bwa_wgs/resources_broad_hg38_v0_Homo_sapiens_assembly38.fasta.64
bwa标准比对
然后合并两个lane
部分下载的数据以CRAM格式保存
How to convert CRAM back to BAM using samtools
It's the same command, just use the -b option instead of -C.
需要最新版samtools读取cram文件
conda install bioconda::samtools
下载GATk: https://github.com/broadinstitute/gatk/releases
下载Jar:https://gatk.broadinstitute.org/hc/en-us/community/posts/360073027611-Where-and-how-I-can-get-GenomeAnalysisTK-jar-script
VariantRecalibrator java.lang.IllegalArgumentException: No data found.
No data found when using VariantRecalibrator
还有配对的RNA-seq
但是使用的是hg19的参考基因组,用的STAR比对。
https://data.broadinstitute.org/snowman/hg19/annotation/
这个bam可以用htseq-count来计数
conda install -c bioconda htseq
conda install bioconda::htseq
进入R里面合并文件
参考:http://localhost:17435/notebooks/projects/TAP_WGS/analysis/RNA-seq.ipynb
从gtf文件里提取信息
grep -v '#' Homo_sapiens_assembly19.gtf | cut -f9 | cut -d' ' -f2,10 | uniq > id.symbol grep -v '#' Homo_sapiens_assembly19.gtf | cut -f1-5 > id.length grep -v '#' Homo_sapiens_assembly19.gtf | cut -f9 | cut -d' ' -f2,10 > full.id.symbol
转化count为TPM
# counts:转录组的count矩阵,行为基因,列为样本 # effLen:一个数值型向量,值是基因长度,顺序应该与count的列一致对应。 Counts2TPM <- function(counts, effLen){ rate <- log(counts) - log(effLen) denom <- log(sum(exp(rate))) exp(rate - denom + log(1e6)) }
trans_tpm <- apply(count, 2, Counts2TPM, effLen = effLen) head(trans_tpm)[,1:2]
参考:RNAseq数据分析中count、FPKM和TPM之间的转换
参考流程: