数学公式看不懂怎么办?| 基础统计学公式汇总

直觉思维和公式推导是两种截然不同的思维方式,想走快必须有直觉,想走远必须能推理。

数学公式推导如何入门?

为什么这么执着于数学统计?数学和统计是对世界及其产生数据最简洁、最优美、最本质的描述,我研究的切入点就是计算与其他生物学科的交叉,计算又怎么能离开数学和统计?必须让自己以数学和统计的思维去看待这个世界。

 

没有捷径,必须把经典的公式一个一个啃下来。

  • 线性回归
  • 假设检验
  • 分布函数
  • 贝叶斯框架 

最终做到,拿到一篇文章的方法,敢深入去分析其中的公式,知道其中涉及了什么模型,解决了什么问题?

最后能根据具体的问题,设计出自己的统计学模型。

 

读懂所有的分布的数学描述,并能自如的写出分布的公式。

从这张图开始Univariate Distribution Relationships

 

其次,多看paper,收集里面的统计学公式描述:

 

贝叶斯

mi=P(Ti=1X)=P(XTi=1)P(Ti=1)P(XTi=0)P(Ti=0)+P(XTi=1)P(Ti=1)

公式背景:We estimated posterior probabilities for each of the top loci identified from the meta-analysis to quantify disorder-specific effects (Han and Eskin, 2012). This estimation, known as the m-value, relies on two assumptions, 1) effects are either present or absent in studies, and 2) if they are present, they are similarly sized across studies. Assume Xi is the observed effect size of study i, and Ti is a random variable with value 1 if study i has an effect and 0 if not, then the m-value can be estimated using Bayes’ theorem: which can then be used to predict whether an effect exists in a given study (> .9) or not (< .1) under the binary effects assumption.

参考文献:Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders

搞清楚什么是先验,什么是后验?是利用什么数据来计算的最大似然?

 

Zmax-meta=maxSS|Z(S)| 

 

 

必须要跨过去的一个大坎

待续~

 

 

参考:

撰写复杂数学公式 | LaTeX排版入门 - 我的博客

看机器学习论文时,看不懂数学公式怎么办?

 

posted @   Life·Intelligence  阅读(3206)  评论(0编辑  收藏  举报
(评论功能已被禁用)
编辑推荐:
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2019-07-25 单细胞数据整合方法 | Comprehensive Integration of Single-Cell Data
2019-07-25 Single Cell Genomics Day: A Practical Workshop
2017-07-25 Python获取脚本所在目录的正确方法(转)
2016-07-25 生物信息学: 导论与方法 | 总结笔记
TOP
点击右上角即可分享
微信分享提示