ATAC-seq数据处理流程 | 自定义 & 个性化分析

本文的分析套路剑指10-20分的journal,全是干货。


 

发现一个不错的专题,讲得很详细。

ATAC-seq/ChIP-seq分析方法

 

其中一个细节IDR,讲得很通俗。

第6篇:重复样本的处理——IDR

 

ATAC-seq data analysis: from FASTQ to peaks

 

基本概念:

  • ATAC-seq和ChIP-seq鉴定出来的peak到底是一些什么区域?除了promotoer就是enhancer
  • TSS enrichment和motif是两个不同的套路,TSS是特指启动区域,每个基因只有一个;另一个就是motif,这就是抓出TF,哪些TF在发挥作用

 

分析套路

鉴定差异peak

  • 两组数据比较
  • 多组数据比较 - peak cluster

处理细节:

  • Peak calling was performed using MACS2 from all sample reads. 多样本这样处理更加靠谱,macs2出来的peak结果才是靠谱的,不要随便用bedtools修改源头的peak,否则得到的peak很奇怪

  • The number of raw reads mapped to each peak at each condition was quantified using the intersectBed function in BedTools. 最终用的别人推荐的multicov

  • Raw counts in peaks were normalized using the DESeq package in R.

  • Peak intensity was defined as the log2 of the normalized counts.

bedtools multicov -bams 1.bam 2.bam 3.bam 4.bam-bed file.bed > read.count.txt

 

可视化差异peak

  • peak signal heatmap
  • distance to TSS

ngsplot这个工具比较好用,很直观,有bam就可以用,不像其他工具,一大堆复杂的衍生格式,没有搞的欲望。

ngs.plot.r -G hg19 -R tss -C example.bam/hesc.H3k4me3.1M.bam -O hesc.H3k4me3.tss -T H3K4me3 -L 3000 -FL 300

Make Enriched Heatmaps

  • 已经测试通了,用ngsplot来快速画图,生成数据;然后用EnrichedHeatmap来画最终的图。
  • 改一下color set,能够画出媲美下面的美图了。

peak功能注释

  • GO terms enriched in peak clusters
  • 可选工具一:Y叔的ChIPseeker,教程
  • 可选工具二:GREAT网络工具,教程

 

peak邻近基因表达分析

  • expression level of genes closest to the top 1000 peaks

  • 可以画二维散点图来展示ATAC-seq和RNA-seq的关系,理想情况是显著正相关关系。

 

motif富集分析

  • TF motifs enriched in peak clusters
  • 结合转录组基因表达数据验证
  • 如何直接在ggplot里添加motif images,教程
  • 可以直接用meme-chip一步到位

 

export PATH=/home/lizhixin/softwares/ATAC-seq-conda/anaconda3/bin:$PATH

sortBed -g genome.txt -i up.sig.peak.bed > sorted.up.sig.peak.bed
sortBed -g genome.txt -i down.sig.peak.bed > sorted.down.sig.peak.bed

cut -f1-3 sorted.up.sig.peak.bed > sorted.up.sig.peak.3col.bed
cut -f1-3 sorted.down.sig.peak.bed > sorted.down.sig.peak.3col.bed

bedtools getfasta -fi /home/lizhixin/softwares/miniconda3/share/homer-4.10-0/.//data/genomes/hg38///genome.fa -bed sorted.up.sig.peak.3col.bed -fo sorted.up.sig.peak.3col.fasta

bedtools getfasta -fi /home/lizhixin/softwares/miniconda3/share/homer-4.10-0/.//data/genomes/hg38///genome.fa -bed sorted.down.sig.peak.3col.bed -fo sorted.down.sig.peak.3col.fasta

intersectBed -a /home/lizhixin/project2/analysis/ATAC-seq/encode-pipeline/ipsc/result/atac/c3097359-919e-43d3-9b81-551e4c8ff029/call-filter/shard-0/execution/glob-3bcbe4e7489c90f75e0523ac6f3a9385/IMR90-iPS_1.trim.merged.nodup.no_chrM_MT.bam -b sorted.up.sig.peak.3col.bed > tmp.bam
samtools index tmp.bam
ngs.plot.r -G hg19 -R tss -C tmp.bam -O IMR90-iPS_1.tss -T IMR90-iPS_1 -L 3000 -FL 300

  

 

 

motif印迹分析

 

转录因子网络

  • Cis-regulatory networks of TFs

 

ChIP-seq数据验证ATAC-seq结果

 

 

 

个别基因可视化问题 - bigwig

 

重点文献:

 

posted @ 2020-05-25 00:14  Life·Intelligence  阅读(8433)  评论(0编辑  收藏  举报
TOP