手动计算富集分析

富集分析非常常见,用于判断抽样的结果是否显著。

 

例子1:一个工厂总共有N件产品,其中M件次品,现在从中抽取n件做检查,抽到k件次品的概率分布服从超几何分布。

例子2:一个细胞有N个基因,其中在pathway A里面有M个基因,现在从中抽取n个基因,抽到k个pathway A里基因的概率分布服从超几何分布。

 

最靠谱的富集分析当属clusterProfiler,里面的enrichGO可以做富集分析。

现在我有个性化的需求,所以要自己做,想借鉴一下里面的代码。

 

查看enrichGO代码,发现是里面的enricher_internal在做这件事,去GitHub查,发现enricher_internal是DOSE的函数,继续去GitHub查,定位到enricher_internal。

代码一览无余:

termID2ExtID <- termID2ExtID[idx]
qTermID2ExtID <- qTermID2ExtID[idx]
qTermID <- unique(names(qTermID2ExtID))

## prepare parameter for hypergeometric test
k <- sapply(qTermID2ExtID, length)
k <- k[qTermID]
M <- sapply(termID2ExtID, length)
M <- M[qTermID]

N <- rep(length(extID), length(M))
## n <- rep(length(gene), length(M)) ## those genes that have no annotation should drop.
n <- rep(length(qExtID2TermID), length(M))
args.df <- data.frame(numWdrawn=k-1, ## White balls drawn
                      numW=M,        ## White balls
                      numB=N-M,      ## Black balls
                      numDrawn=n)    ## balls drawn


## calcute pvalues based on hypergeometric model
pvalues <- apply(args.df, 1, function(n)
                 phyper(n[1], n[2], n[3], n[4], lower.tail=FALSE)
                 )

## gene ratio and background ratio
GeneRatio <- apply(data.frame(a=k, b=n), 1, function(x)
                   paste(x[1], "/", x[2], sep="", collapse="")
                   )
BgRatio <- apply(data.frame(a=M, b=N), 1, function(x)
                 paste(x[1], "/", x[2], sep="", collapse="")
                 )


Over <- data.frame(ID = as.character(qTermID),
                   GeneRatio = GeneRatio,
                   BgRatio = BgRatio,
                   pvalue = pvalues,
                   stringsAsFactors = FALSE)

p.adj <- p.adjust(Over$pvalue, method=pAdjustMethod)
qobj <- tryCatch(qvalue(p=Over$pvalue, lambda=0.05, pi0.method="bootstrap"), error=function(e) NULL)

if (class(qobj) == "qvalue") {
    qvalues <- qobj$qvalues
} else {
    qvalues <- NA
}

geneID <- sapply(qTermID2ExtID, function(i) paste(i, collapse="/"))
geneID <- geneID[qTermID]
Over <- data.frame(Over,
                   p.adjust = p.adj,
                   qvalue = qvalues,
                   geneID = geneID,
                   Count = k,
                   stringsAsFactors = FALSE)

Description <- TERM2NAME(qTermID, USER_DATA)

if (length(qTermID) != length(Description)) {
    idx <- qTermID %in% names(Description)
    Over <- Over[idx,]
}
Over$Description <- Description
nc <- ncol(Over)
Over <- Over[, c(1,nc, 2:(nc-1))]


Over <- Over[order(pvalues),]


Over$ID <- as.character(Over$ID)
Over$Description <- as.character(Over$Description)

row.names(Over) <- as.character(Over$ID)

x <- new("enrichResult",
         result         = Over,
         pvalueCutoff   = pvalueCutoff,
         pAdjustMethod  = pAdjustMethod,
         qvalueCutoff   = qvalueCutoff,
         gene           = as.character(gene),
         universe       = extID,
         geneSets       = geneSets,
         organism       = "UNKNOWN",
         keytype        = "UNKNOWN",
         ontology       = "UNKNOWN",
         readable       = FALSE
         )
return (x)

  

核心就是这个代码了:

args.df <- data.frame(numWdrawn=k-1, ## White balls drawn
                  numW=M,        ## White balls
                  numB=N-M,      ## Black balls
                  numDrawn=n)    ## balls drawn


## calcute pvalues based on hypergeometric model
pvalues <- apply(args.df, 1, function(n)
             phyper(n[1], n[2], n[3], n[4], lower.tail=FALSE)
             )

  

phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)

其中:

第一个参数:q
vector of quantiles representing the number of white balls drawn without replacement from an urn which contains both black and white balls.

第二个参数:m
the number of white balls in the urn.

第三个参数:n
the number of black balls in the urn.

第四个参数:k
the number of balls drawn from the urn.

ID Description GeneRatio BgRatio pvalue p.adjust qvalue
GO:0008380 RNA splicing 68/854 364/23210 6.07E-29 2.70E-25 2.28E-25

关键的只有两个数:

GeneRatio:我输入的基因数854(n),其中在pathway A里的有68个(k)

BgRatio:总共背景(有注释)基因数23210(N),其中pathway A里的基因数364个(M)

 

phyper(k-1, M, N-M, n, lower.tail = TRUE, log.p = FALSE)

 

带入数字:

phyper(67, 364, 23210-364, 854, lower.tail = TRUE, log.p = FALSE) = 6.07163831922482e-29

结果一致。

 

进阶:

  • lower.tail是什么
  • 为什么第一个参数要减1

 

参考:

超几何分布检验(hypergeometric test)

https://github.com/YuLab-SMU/DOSE/blob/5be8e21c56242d58b5576c20412b3457bc61dae7/R/enricher_internal.R

不靠谱的富集软件太多了!

posted @ 2020-03-17 14:14  Life·Intelligence  阅读(1764)  评论(0编辑  收藏  举报
TOP