Apache Hudi + AWS S3 + Athena实战
Apache Hudi在阿里巴巴集团、EMIS Health,LinkNovate,Tathastu.AI,腾讯,Uber内使用,并且由Amazon AWS EMR和Google云平台支持,最近Amazon Athena支持了在Amazon S3上查询Apache Hudi数据集的能力,本博客将测试Athena查询S3上Hudi格式数据集。
1. 准备-Spark环境,S3 Bucket
需要使用Spark写入Hudi数据,登陆Amazon EMR并启动spark-shell:
$ export SCALA_VERSION=2.12
$ export SPARK_VERSION=2.4.4
$ spark-shell \
--packages org.apache.hudi:hudi-spark-bundle_${SCALA_VERSION}:0.5.3,org.apache.spark:spark-avro_${SCALA_VERSION}:${SPARK_VERSION}\
--conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'
...
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.4.4
/_/
Using Scala version 2.12.10 (OpenJDK 64-Bit Server VM, Java 1.8.0_242)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
接着使用如下scala代码设置表名,基础路径以及数据生成器来生成数据。这里设置basepath
为s3://hudi_athena_test/hudi_trips
,以便后面进行查询
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
val tableName = "hudi_trips"
val basePath = "s3://hudi_athena_test/hudi_trips"
val dataGen = new DataGenerator
2. 插入数据
生成新的行程数据,导入DataFrame,并将其写入Hudi表
val inserts = convertToStringList(dataGen.generateInserts(10))
val df = spark.read.json(spark.sparkContext.parallelize(inserts, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Overwrite).
save(basePath)
3. 创建Athena数据库/表
Hudi内置表分区支持,所以在创建表后需要添加分区,安装athenareader
工具,其提供Athena多个查询和其他有用的特性。
go get -u github.com/uber/athenadriver/athenareader
接着创建hudi_athena_test.sql
文件,内容如下
DROP DATABASE IF EXISTS hudi_athena_test CASCADE;
create database hudi_athena_test;
CREATE EXTERNAL TABLE `trips`(
`begin_lat` double,
`begin_lon` double,
`driver` string,
`end_lat` double,
`end_lon` double,
`fare` double,
`rider` string,
`ts` double,
`uuid` string
) PARTITIONED BY (`partitionpath` string)
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT 'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION 's3://hudi_athena_test/hudi_trips'
ALTER TABLE trips ADD
PARTITION (partitionpath = 'americas/united_states/san_francisco') LOCATION 's3://hudi_athena_test/hudi_trips/americas/united_states/san_francisco'
PARTITION (partitionpath = 'americas/brazil/sao_paulo') LOCATION 's3://hudi_athena_test/hudi_trips/americas/brazil/sao_paulo'
PARTITION (partitionpath = 'asia/india/chennai') LOCATION 's3://hudi_athena_test/hudi_trips/asia/india/chennai'
使用如下命令运行SQL语句
$ athenareader -q hudi_athena_test.sql
4. 使用Athena查询Hudi
如果没有错误,那么说明库和表在Athena中都已创建好,因此可以在Athena中查询Hudi数据集,使用athenareader
查询结果如下
athenareader -q "select * from trips" -o markdown
也可以带条件进行查询
athenareader -q "select fare,rider from trips where fare>20" -o markdown
5. 更新Hudi表再次查询
Hudi支持S3中的数据,回到spark-shell并使用如下命令更新部分数据
val updates = convertToStringList(dataGen.generateUpdates(10))
val df = spark.read.json(spark.sparkContext.parallelize(updates, 2))
df.write.format("hudi").
options(getQuickstartWriteConfigs).
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "uuid").
option(PARTITIONPATH_FIELD_OPT_KEY, "partitionpath").
option(TABLE_NAME, tableName).
mode(Append).
save(basePath)
运行完成后,使用athenareader
再次查询
athenareader -q "select * from trips" -o markdown
可以看到数据已经更新了
6. 限制
Athena不支持查询快照或增量查询,Hive/SparkSQL支持,为进行验证,通过spark-shell创建一个快照
spark.
read.
format("hudi").
load(basePath + "/*/*/*/*").
createOrReplaceTempView("hudi_trips_snapshot")
使用如下代码查询
val commits = spark.sql("select distinct(_hoodie_commit_time) as commitTime from hudi_trips_snapshot order by commitTime").map(k => k.getString(0)).take(50)
val beginTime = commits(commits.length - 2)
使用Athena查询将会失败,因为没有物化
$ athenareader -q "select distinct(_hoodie_commit_time) as commitTime from hudi_trips_snapshot order by commitTime"
SYNTAX_ERROR: line 1:57: Table awsdatacatalog.hudi_athena_test.hudi_trips_snapshot does not exist
根据官方文档,Athena支持查询Hudi数据集的Read-Optimized视图,同时,我们可以通过Athena来创建视图并进行查询,使用Athena在Hudi表上创建一个视图
$ athenareader -q "create view fare_greater_than_40 as select * from trips where fare>40" -a
查询视图
$ athenareader -q "select fare,rider from fare_greater_than_40"
FARE RIDER
43.4923811219014 rider-213
63.72504913279929 rider-284
90.25710109008239 rider-284
93.56018115236618 rider-213
49.527694252432056 rider-284
90.9053809533154 rider-284
98.3428192817987 rider-284
PS:如果您觉得阅读本文对您有帮助,请点一下“推荐”按钮,您的“推荐”,将会是我不竭的动力!
作者:leesf 掌控之中,才会成功;掌控之外,注定失败。
出处:http://www.cnblogs.com/leesf456/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。
如果觉得本文对您有帮助,您可以请我喝杯咖啡!