MapReduce Design Patterns(2. 中位数、方差)(三)

http://blog.csdn.net/cuirong1986/article/details/8455335

 

Median and standard deviation

 

中值和标准差的计算比前面的例子复杂一点。因为这种运算是非关联的,它们不是那么容易的能从combiner中获益。中值是将数据集一分为两等份的数值类型,一份比中值大,一部分比中值小。这需要数据集按顺序完成清洗。数据必须是排序的,但存在一定障碍,因为MapReduce不会根据values排序。

 

方差告诉我们数据跟平均值之间的差异程度。这就要求我们之前要先找到平均值。执行这种操作最容易的方法是复制值得列表到临时列表,以便找到中值,或者再一次迭代集合所有数据得到标准差。对大的数据量,这种实现可能导致java堆空间的问题,引文每个输入组的每个值都放进内存处理。下一个例子就是针对这种问题的。

 

问题:给出用户评论,计算一天中每个小时评论长度的中值和标准差。

 

Mapper codeMapper会处理每条输入记录计算一天内每个小时评论长度的中值(貌似事实不是这样)。输出键是小时,输出值是评论长度。

 

public static class MedianStdDevMapper extends
        Mapper<Object, Text, IntWritable, IntWritable> {

    private IntWritable outHour = new IntWritable();
    private IntWritable outCommentLength = new IntWritable();
    private final static SimpleDateFormat frmt = new SimpleDateFormat(
            "yyyy-MM-dd'T'HH:mm:ss.SSS");

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {
         Map<String, String> parsed = transformXmlToMap(value.toString());
         String strDate = parsed.get("CreationDate");
         String text = parsed.get("Text");
         Date creationDate = frmt.parse(strDate);
         outHour.set(creationDate.getHours());
         outCommentLength.set(text.length());
         context.write(outHour, outCommentLength);
    }
}

 

 


Reducer codeReducer会迭代给定值得集合,并把每个值加到内存列表里。同时也会计算一个动态的sumcount。迭代之后,评论长度被排序,以便找出中值。如果数量是偶数,中值是中间两个数的平均值。下面,根据动态的sumcount计算出平均值,然后迭代排序的列表计算出标准差。每个数跟平均值的差的平方累加求和保存在一个动态sum中,这个sum的平方根就是标准差。最后输出key,中值和标准差。

 

public static class MedianStdDevReducer extends
        Reducer<IntWritable, IntWritable, IntWritable, MedianStdDevTuple> {

    private MedianStdDevTuple result = new MedianStdDevTuple();
    private ArrayList<Float> commentLengths = new ArrayList<Float>();

    public void reduce(IntWritable key, Iterable<IntWritable> values,
            Context context) throws IOException, InterruptedException {
        float sum = 0;
        float count = 0;
        commentLengths.clear();
        result.setStdDev(0);
// Iterate through all input values for this key
        for (IntWritable val : values) {
            commentLengths.add((float) val.get());
            sum += val.get();
            ++count;
        }
// sort commentLengths to calculate median
        Collections.sort(commentLengths);
// if commentLengths is an even value, average middle two elements
        if (count % 2 == 0) {
            result.setMedian((commentLengths.get((int) count / 2 - 1)
                    + commentLengths.get((int) count / 2)) / 2.0f);
        } else {
// else, set median to middle value
            result.setMedian(commentLengths.get((int) count / 2));
        }
// calculate standard deviation
        float mean = sum / count;
        float sumOfSquares = 0.0f;
        for (Float f : commentLengths) {
            sumOfSquares += (f - mean) * (f - mean);
        }
        result.setStdDev((float) Math.sqrt(sumOfSquares / (count - 1)));
        context.write(key, result);
    }
}

 


Combiner optimization。这种情况下不能用combinerreducer需要所有的值去计算中值和标准差。因为combiner仅仅在一个map本地处理中间键值对。计算完整的中值,和标准值是不可能的。下面的例子是一种复杂一点的使用自定义的combiner的实现。

 

Memory-conscious median and standard deviation

下面的例子跟前一个不同,并减少了内存的使用。把值放进列表会导致很多重复的元素。一种去重的方法是标记元素的个数。例如,对于列表< 1, 1, 1, 1, 2, 2, 3,4, 5, 5, 5 >,可以用一个sorted map保存:(14, 22, 31, 41, 53)。核心的原理是一样的:reduce阶段会迭代所有值并放入内存数据结构中。数据结构和搜索的方式是改变的地方。Map很大程度上减少了内存的使用。前一个例子使用list,复杂度为On),n是评论条数,本例使用map,使用键值对,为Omaxm)),m是评论长度的最大值。作为额外的补充,combiner的使用能帮助聚合评论长度的数目,并通过writable对象输出reducer端将要使用的这个map

 

问题:同前一个。

 

Mapper codeMapper处理输入记录,输出键是小时,值是sortedmapwritable对象,包含一个元素:评论长度和计数1.这个mapreducercombiner里多处用到。

 

public static class MedianStdDevMapper extends
        Mapper<lObject, Text, IntWritable, SortedMapWritable> {

    private IntWritable commentLength = new IntWritable();
    private static final LongWritable ONE = new LongWritable(1);
    private IntWritable outHour = new IntWritable();
    private final static SimpleDateFormat frmt = new SimpleDateFormat(
            "yyyy-MM-dd'T'HH:mm:ss.SSS");

    public void map(Object key, Text value, Context context)
            throws IOException, InterruptedException {
        Map<String, String> parsed = transformXmlToMap(value.toString());
// Grab the "CreationDate" field,
// since it is what we are grouping by
        String strDate = parsed.get("CreationDate");
// Grab the comment to find the length
        String text = parsed.get("Text");
// Get the hour this comment was posted in
        Date creationDate = frmt.parse(strDate);
        outHour.set(creationDate.getHours());
        commentLength.set(text.length());
        SortedMapWritable outCommentLength = new SortedMapWritable();
        outCommentLength.put(commentLength, ONE);
// Write out the user ID with min max dates and count
        context.write(outHour, outCommentLength);
    }
}

 

 


 

Reducer codeReducer通过迭代上面的map生成一个大的treemapkey是评论长度,value是这个长度的评论的数目。

 

迭代以后,中值被计算出来。中值的索引由评论总数除以2得出。然后迭代treemapentrySet找到key,需满足条件为:previousCommentCount medianIndex < commentCount,把treeMap的值加到每一步迭代的评论里。一旦条件满足,如果有偶数条评论且中值索引等于前一条评论的,中值取前一个的长度和当前长度的平均值。否则,中值就是当前评论的长度。

 

接下来,再一次迭代treemap,计算出平方和,确保相关联的评论长度和数目相乘。标准差就根据平方和算出来了。中值和标准差就随着key一块输出。

 

public static class MedianStdDevReducer extends
        Reducer<IntWritable, SortedMapWritable, IntWritable, MedianStdDevTuple> {

    private MedianStdDevTuple result = new MedianStdDevTuple();
    private TreeMap<Integer, Long> commentLengthCounts
            = new TreeMap<Integer, Long>();

    public void reduce(IntWritable key, Iterable<SortedMapWritable> values,
            Context context) throws IOException, InterruptedException {
        float sum = 0;
        long totalComments = 0;
        commentLengthCounts.clear();
        result.setMedian(0);
        result.setStdDev(0);
        for (SortedMapWritable v : values) {
            for (Map.Entry<WritableComparable, Writable> entry : v.entrySet()) {
                int length = ((IntWritable) entry.getKey()).get();
                long count = ((LongWritable) entry.getValue()).get();
                totalComments += count;
                sum += length * count;
                Long storedCount = commentLengthCounts.get(length);
                if (storedCount == null) {
                    commentLengthCounts.put(length, count);
                } else {
                    commentLengthCounts.put(length, storedCount + count);
                }
            }
        }
        long medianIndex = totalComments / 2L;
        long previousComments = 0;
        long comments = 0;
        int prevKey = 0;
        for (Map.Entry<Integer, Long> entry : commentLengthCounts.entrySet()) {
            comments = previousComments + entry.getValue();
            if (previousComments <= medianIndex && medianIndex < comments) {
                if (totalComments % 2 == 0 && previousComments == medianIndex) {
                    result.setMedian((float) (entry.getKey() + prevKey) / 2.0f);
                } else {
                    result.setMedian(entry.getKey());
                }
                break;
            }
            previousComments = comments;
            prevKey = entry.getKey();
        }
// calculate standard deviation
        float mean = sum / totalComments;
        float sumOfSquares = 0.0f;
        for (Map.Entry<Integer, Long> entry : commentLengthCounts.entrySet()) {
            sumOfSquares += (entry.getKey() - mean) * (entry.getKey() - mean)
                    * entry.getValue();
        }
        result.setStdDev((float) Math.sqrt(sumOfSquares / (totalComments - 1)));
        context.write(key, result);
    }
}

 

 

Combiner optimization。跟前面的例子不同,这里combiner的逻辑跟reducer不同。Reducer计算中值和标准差,而combiner对每个本地map的中间键值对聚合sortedMapWritable条目。代码解析这些条目并在本地map聚合它们,这跟前面部分的reducer代码是相同的。这里用一个hashmap替换treemap,因为不需要排序,且hashmap更快。Reducer使用map计算中值和标准差,而combiner是用sortedMapWritable序列化为reduce阶段做准备。

 

public static class MedianStdDevCombiner extends
        Reducer<IntWritable, SortedMapWritable, IntWritable, SortedMapWritable> {

    protected void reduce(IntWritable key,
            Iterable<SortedMapWritable> values, Context context)
            throws IOException, InterruptedException {
        SortedMapWritable outValue = new SortedMapWritable();
        for (SortedMapWritable v : values) {
            for (Map.Entry<WritableComparable, Writable> entry : v.entrySet()) {
                LongWritable count = (LongWritable) outValue.get(entry.getKey());
                if (count != null) {
                    count.set(count.get()
                            + ((LongWritable) entry.getValue()).get());
                } else {
                    outValue.put(entry.getKey(), new LongWritable(
                            ((LongWritable) entry.getValue()).get()));
                }
            }
        }
        context.write(key, outValue);
    }
}

 


Data flow diagram。图2-4展示了例子的数据流程图

 

Figure 2-4. Data flow for the standard deviation example


posted @ 2014-12-29 16:10  lihui1625  阅读(391)  评论(0编辑  收藏  举报