堆树

一、堆树的定义

堆树的定义如下:

(1)堆树是一颗完全二叉树;

(2)堆树中某个节点的值总是不大于或不小于其孩子节点的值;

(3)堆树中每个节点的子树都是堆树。

当父节点的键值总是大于或等于任何一个子节点的键值时为最大堆。 当父节点的键值总是小于或等于任何一个子节点的键值时为最小堆。如下图所示,左边为最大堆,右边为最小堆。


二、堆树的操作

以最大堆为例进行讲解,最小堆同理。

原始数据为a[] = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7},采用顺序存储方式,对应的完全二叉树如下图所示:

(1)构造最大堆

在构造堆的基本思想就是:首先将每个叶子节点视为一个堆,再将每个叶子节点与其父节点一起构造成一个包含更多节点的对。

所以,在构造堆的时候,首先需要找到最后一个节点的父节点,从这个节点开始构造最大堆;直到该节点前面所有分支节点都处理完毕,这样最大堆就构造完毕了。

假设树的节点个数为n,以1为下标开始编号,直到n结束。对于节点i,其父节点为i/2;左孩子节点为i*2,右孩子节点为i*2+1。最后一个节点的下标为n,其父节点的下标为n/2。


如下图所示,最后一个节点为7,其父节点为16,从16这个节点开始构造最大堆;构造完毕之后,转移到下一个父节点2,直到所有父节点都构造完毕。

C++代码实现:

定义存放堆的结构如下:

  1. strcut MaxHeap
  2. {
  3. Etype *heap;
  4. int HeapSize;
  5. int MaxSize;
  6. };
  7. MaxHeap H;

其中,heap是数据元素存放的空间,下标从1开始存数数据,下标为0的作为工作空间,存储临时数据。HeapSize是数据元素的个数,MaxSize是存放数据元素空间的大小。

初始化堆方法如下:

  1. void MaxHeapInit (MaxHeap &H)
  2. {
  3. for(int i = H.HeapSize/2; i>=1; i--)
  4. {
  5. H.heap[0] = H.heap[i];
  6. int son = i*2;
  7. while(son <= H.HeapSize)
  8. {
  9. if(son < H.HeapSize && H.heap[son] < H.heap[son+1])
  10. son++;
  11. if(H.heap[0] >= H.heap[son])
  12. break;
  13. else
  14. {
  15. H.heap[son/2] = H.heap[son];
  16. son *= 2;
  17. }
  18. }
  19. H.heap[son/2] = H.heap[0];
  20. }
  21. }

(2)最大堆中插入节点

最大堆的插入节点的思想就是先在堆的最后添加一个节点,然后沿着堆树上升。跟最大堆的初始化过程大致相同。

C++代码实现:

  1. void MaxHeapInsert (MaxHeap &H, EType &x)
  2. {
  3. if(H.HeapSize == H.MaxSize)
  4. return false;
  5. int i = ++H.HeapSize;
  6. while(i!=1 && x>H.heap[i/2])
  7. {
  8. H.heap[i] = H.heap[i/2];
  9. i = i/2;
  10. }
  11. H.heap[i] = x;
  12. return true;
  13. }

(3)最大堆中堆顶节点的删除

最大堆堆顶节点删除思想如下:将堆树的最后的节点提到根结点,然后删除最大值,然后再把新的根节点放到合适的位置

C++代码实现:

  1. void MaxHeapDelete (MaxHeap &H, EType &x)
  2. {
  3. if(H.HeapSize == 0)
  4. return false;
  5. x = H.heap[1];
  6. H.heap[0] = H.heap[H.HeapSize--];
  7. int i = 1, son = i*2;
  8. while(son <= H.HeapSize)
  9. {
  10. if(son <= H.HeapSize && H.heap[0] < H.heap[son+1])
  11. son++;
  12. if(H.heap[0] >= H.heap[son])
  13. break;
  14. H.heap[i] = H.heap[son];
  15. i = son;
  16. son = son*2;
  17. }
  18. H.heap[i] = H.heap[0];
  19. return true;
  20. }

三、堆树的应用

利用最大堆、最小堆进行排序。

堆排序算法详解:http://blog.csdn.net/guoweimelon/article/details/50904231


参考文献:

1、彻底弄懂最大堆的四种操作(图解+程序)(JAVA) http://128kj.iteye.com/blog/1728555

2、最大堆、最小堆 http://blog.csdn.net/genios/article/details/8157031

posted @ 2019-06-20 14:31  Le1B_o  阅读(289)  评论(0编辑  收藏  举报