elasticsearch系列六:聚合分析(聚合分析简介、指标聚合、桶聚合)
一、聚合分析简介
1. ES聚合分析是什么?
聚合分析是数据库中重要的功能特性,完成对一个查询的数据集中数据的聚合计算,如:找出某字段(或计算表达式的结果)的最大值、最小值,计算和、平均值等。ES作为搜索引擎兼数据库,同样提供了强大的聚合分析能力。
对一个数据集求最大、最小、和、平均值等指标的聚合,在ES中称为指标聚合 metric
而关系型数据库中除了有聚合函数外,还可以对查询出的数据进行分组group by,再在组上进行指标聚合。在 ES 中group by 称为分桶,桶聚合 bucketing
ES中还提供了矩阵聚合(matrix)、管道聚合(pipleline),但还在完善中。
2. ES聚合分析查询的写法
在查询请求体中以aggregations节点按如下语法定义聚合分析:
"aggregations" : { "<aggregation_name>" : { <!--聚合的名字 --> "<aggregation_type>" : { <!--聚合的类型 --> <aggregation_body> <!--聚合体:对哪些字段进行聚合 --> } [,"meta" : { [<meta_data_body>] } ]? <!--元 --> [,"aggregations" : { [<sub_aggregation>]+ } ]? <!--在聚合里面在定义子聚合 --> } [,"<aggregation_name_2>" : { ... } ]*<!--聚合的名字 --> }
说明:
aggregations 也可简写为 aggs
3. 聚合分析的值来源
聚合计算的值可以取字段的值,也可是脚本计算的结果。
二、指标聚合
1. max min sum avg
示例1:查询所有客户中余额的最大值
POST /bank/_search?
{
"size": 0,
"aggs": {
"masssbalance": {
"max": {
"field": "balance"
}
}
}
}
结果1:
{
"took": 2080,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"masssbalance": {
"value": 49989
}
}
}
示例2:查询年龄为24岁的客户中的余额最大值
POST /bank/_search?
{
"size": 2,
"query": {
"match": {
"age": 24
}
},
"sort": [
{
"balance": {
"order": "desc"
}
}
],
"aggs": {
"max_balance": {
"max": {
"field": "balance"
}
}
}
}
结果2:
{
"took": 5,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 42,
"max_score": null,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "697",
"_score": null,
"_source": {
"account_number": 697,
"balance": 48745,
"firstname": "Mallory",
"lastname": "Emerson",
"age": 24,
"gender": "F",
"address": "318 Dunne Court",
"employer": "Exoplode",
"email": "malloryemerson@exoplode.com",
"city": "Montura",
"state": "LA"
},
"sort": [
48745
]
},
{
"_index": "bank",
"_type": "_doc",
"_id": "917",
"_score": null,
"_source": {
"account_number": 917,
"balance": 47782,
"firstname": "Parks",
"lastname": "Hurst",
"age": 24,
"gender": "M",
"address": "933 Cozine Avenue",
"employer": "Pyramis",
"email": "parkshurst@pyramis.com",
"city": "Lindcove",
"state": "GA"
},
"sort": [
47782
]
}
]
},
"aggregations": {
"max_balance": {
"value": 48745
}
}
}
示例3:值来源于脚本,查询所有客户的平均年龄是多少,并对平均年龄加10
POST /bank/_search?size=0
{
"aggs": {
"avg_age": {
"avg": {
"script": {
"source": "doc.age.value"
}
}
},
"avg_age10": {
"avg": {
"script": {
"source": "doc.age.value + 10"
}
}
}
}
}
结果3:
{
"took": 86,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"avg_age": {
"value": 30.171
},
"avg_age10": {
"value": 40.171
}
}
}
示例4:指定field,在脚本中用_value 取字段的值
POST /bank/_search?size=0
{
"aggs": {
"sum_balance": {
"sum": {
"field": "balance",
"script": {
"source": "_value * 1.03"
}
}
}
}
}
结果4:
{
"took": 165,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"sum_balance": {
"value": 26486282.11
}
}
}
示例5:为没有值字段指定值。如未指定,缺失该字段值的文档将被忽略。
POST /bank/_search?size=0
{
"aggs": {
"avg_age": {
"avg": {
"field": "age",
"missing": 18
}
}
}
}
2. 文档计数 count
示例1:统计银行索引bank下年龄为24的文档数量
POST /bank/_doc/_count
{
"query": {
"match": {
"age" : 24
}
}
}
结果1:
{
"count": 42,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
}
}
3. Value count 统计某字段有值的文档数
示例1:
POST /bank/_search?size=0
{
"aggs": {
"age_count": {
"value_count": {
"field": "age"
}
}
}
}
结果1:
{
"took": 2022,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_count": {
"value": 1000
}
}
}
4. cardinality 值去重计数
示例1:
POST /bank/_search?size=0
{
"aggs": {
"age_count": {
"cardinality": {
"field": "age"
}
},
"state_count": {
"cardinality": {
"field": "state.keyword"
}
}
}
}
说明:state的使用它的keyword版
结果1:
{
"took": 2074,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"state_count": {
"value": 51
},
"age_count": {
"value": 21
}
}
}
5. stats 统计 count max min avg sum 5个值
示例1:
POST /bank/_search?size=0
{
"aggs": {
"age_stats": {
"stats": {
"field": "age"
}
}
}
}
结果1:
{
"took": 7,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_stats": {
"count": 1000,
"min": 20,
"max": 40,
"avg": 30.171,
"sum": 30171
}
}
}
6. Extended stats
高级统计,比stats多4个统计结果: 平方和、方差、标准差、平均值加/减两个标准差的区间
示例1:
POST /bank/_search?size=0
{
"aggs": {
"age_stats": {
"extended_stats": {
"field": "age"
}
}
}
}
结果1:
{
"took": 7,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_stats": {
"count": 1000,
"min": 20,
"max": 40,
"avg": 30.171,
"sum": 30171,
"sum_of_squares": 946393,
"variance": 36.10375899999996,
"std_deviation": 6.008640362012022,
"std_deviation_bounds": {
"upper": 42.18828072402404,
"lower": 18.153719275975956
}
}
}
}
7. Percentiles 占比百分位对应的值统计
对指定字段(脚本)的值按从小到大累计每个值对应的文档数的占比(占所有命中文档数的百分比),返回指定占比比例对应的值。默认返回[ 1, 5, 25, 50, 75, 95, 99 ]分位上的值。如下中间的结果,可以理解为:占比为50%的文档的age值 <= 31,或反过来:age<=31的文档数占总命中文档数的50%
示例1:
POST /bank/_search?size=0
{
"aggs": {
"age_percents": {
"percentiles": {
"field": "age"
}
}
}
}
结果1:
{
"took": 87,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_percents": {
"values": {
"1.0": 20,
"5.0": 21,
"25.0": 25,
"50.0": 31,
"75.0": 35.00000000000001,
"95.0": 39,
"99.0": 40
}
}
}
}
结果说明:
占比为50%的文档的age值 <= 31,或反过来:age<=31的文档数占总命中文档数的50%
示例2:指定分位值
POST /bank/_search?size=0
{
"aggs": {
"age_percents": {
"percentiles": {
"field": "age",
"percents" : [95, 99, 99.9]
}
}
}
}
结果2:
{
"took": 8,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_percents": {
"values": {
"95.0": 39,
"99.0": 40,
"99.9": 40
}
}
}
}
8. Percentiles rank 统计值小于等于指定值的文档占比
示例1:统计年龄小于25和30的文档的占比,和第7项相反
POST /bank/_search?size=0
{
"aggs": {
"gge_perc_rank": {
"percentile_ranks": {
"field": "age",
"values": [
25,
30
]
}
}
}
}
结果2:
{
"took": 8,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"gge_perc_rank": {
"values": {
"25.0": 26.1,
"30.0": 49.2
}
}
}
}
结果说明:年龄小于25的文档占比为26.1%,年龄小于30的文档占比为49.2%,
9. Geo Bounds aggregation 求文档集中的地理位置坐标点的范围
参考官网链接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-geobounds-aggregation.html
10. Geo Centroid aggregation 求地理位置中心点坐标值
参考官网链接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-geocentroid-aggregation.html
三、桶聚合
1. Terms Aggregation 根据字段值项分组聚合
示例1:
POST /bank/_search?size=0
{
"aggs": {
"age_terms": {
"terms": {
"field": "age"
}
}
}
}
结果1:
{
"took": 2000,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_terms": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 463,
"buckets": [
{
"key": 31,
"doc_count": 61
},
{
"key": 39,
"doc_count": 60
},
{
"key": 26,
"doc_count": 59
},
{
"key": 32,
"doc_count": 52
},
{
"key": 35,
"doc_count": 52
},
{
"key": 36,
"doc_count": 52
},
{
"key": 22,
"doc_count": 51
},
{
"key": 28,
"doc_count": 51
},
{
"key": 33,
"doc_count": 50
},
{
"key": 34,
"doc_count": 49
}
]
}
}
}
结果说明:
"doc_count_error_upper_bound": 0:文档计数的最大偏差值
"sum_other_doc_count": 463:未返回的其他项的文档数
默认情况下返回按文档计数从高到低的前10个分组:
"buckets": [
{
"key": 31,
"doc_count": 61
},
{
"key": 39,
"doc_count": 60
},
.............
]
年龄为31的文档有61个,年龄为39的文档有60个
size 指定返回多少个分组:
示例2:指定返回20个分组
POST /bank/_search?size=0
{
"aggs": {
"age_terms": {
"terms": {
"field": "age",
"size": 20
}
}
}
}
结果2:
{
"took": 9,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_terms": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 35,
"buckets": [
{
"key": 31,
"doc_count": 61
},
{
"key": 39,
"doc_count": 60
},
{
"key": 26,
"doc_count": 59
},
{
"key": 32,
"doc_count": 52
},
{
"key": 35,
"doc_count": 52
},
{
"key": 36,
"doc_count": 52
},
{
"key": 22,
"doc_count": 51
},
{
"key": 28,
"doc_count": 51
},
{
"key": 33,
"doc_count": 50
},
{
"key": 34,
"doc_count": 49
},
{
"key": 30,
"doc_count": 47
},
{
"key": 21,
"doc_count": 46
},
{
"key": 40,
"doc_count": 45
},
{
"key": 20,
"doc_count": 44
},
{
"key": 23,
"doc_count": 42
},
{
"key": 24,
"doc_count": 42
},
{
"key": 25,
"doc_count": 42
},
{
"key": 37,
"doc_count": 42
},
{
"key": 27,
"doc_count": 39
},
{
"key": 38,
"doc_count": 39
}
]
}
}
}
示例3:每个分组上显示偏差值
POST /bank/_search?size=0
{
"aggs": {
"age_terms": {
"terms": {
"field": "age",
"size": 5,
"shard_size": 20,
"show_term_doc_count_error": true
}
}
}
}
结果3:
{
"took": 8,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_terms": {
"doc_count_error_upper_bound": 25,
"sum_other_doc_count": 716,
"buckets": [
{
"key": 31,
"doc_count": 61,
"doc_count_error_upper_bound": 0
},
{
"key": 39,
"doc_count": 60,
"doc_count_error_upper_bound": 0
},
{
"key": 26,
"doc_count": 59,
"doc_count_error_upper_bound": 0
},
{
"key": 32,
"doc_count": 52,
"doc_count_error_upper_bound": 0
},
{
"key": 36,
"doc_count": 52,
"doc_count_error_upper_bound": 0
}
]
}
}
}
示例4:shard_size 指定每个分片上返回多少个分组
shard_size 的默认值为:
索引只有一个分片:= size
多分片:= size * 1.5 + 10
POST /bank/_search?size=0
{
"aggs": {
"age_terms": {
"terms": {
"field": "age",
"size": 5,
"shard_size": 20
}
}
}
}
结果4:
{
"took": 8,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_terms": {
"doc_count_error_upper_bound": 25,
"sum_other_doc_count": 716,
"buckets": [
{
"key": 31,
"doc_count": 61
},
{
"key": 39,
"doc_count": 60
},
{
"key": 26,
"doc_count": 59
},
{
"key": 32,
"doc_count": 52
},
{
"key": 36,
"doc_count": 52
}
]
}
}
}
order 指定分组的排序
示例5:根据文档计数排序
POST /bank/_search?size=0
{
"aggs": {
"age_terms": {
"terms": {
"field": "age",
"order" : { "_count" : "asc" }
}
}
}
}
结果5:
{
"took": 3,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_terms": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 584,
"buckets": [
{
"key": 29,
"doc_count": 35
},
{
"key": 27,
"doc_count": 39
},
{
"key": 38,
"doc_count": 39
},
{
"key": 23,
"doc_count": 42
},
{
"key": 24,
"doc_count": 42
},
{
"key": 25,
"doc_count": 42
},
{
"key": 37,
"doc_count": 42
},
{
"key": 20,
"doc_count": 44
},
{
"key": 40,
"doc_count": 45
},
{
"key": 21,
"doc_count": 46
}
]
}
}
}
示例6:根据分组值排序
POST /bank/_search?size=0
{
"aggs": {
"age_terms": {
"terms": {
"field": "age",
"order" : { "_key" : "asc" }
}
}
}
}
结果6:
{
"took": 10,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_terms": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 549,
"buckets": [
{
"key": 20,
"doc_count": 44
},
{
"key": 21,
"doc_count": 46
},
{
"key": 22,
"doc_count": 51
},
{
"key": 23,
"doc_count": 42
},
{
"key": 24,
"doc_count": 42
},
{
"key": 25,
"doc_count": 42
},
{
"key": 26,
"doc_count": 59
},
{
"key": 27,
"doc_count": 39
},
{
"key": 28,
"doc_count": 51
},
{
"key": 29,
"doc_count": 35
}
]
}
}
}
示例7:取分组指标值排序
POST /bank/_search?size=0
{
"aggs": {
"age_terms": {
"terms": {
"field": "age",
"order": {
"max_balance": "asc"
}
},
"aggs": {
"max_balance": {
"max": {
"field": "balance"
}
},
"min_balance": {
"min": {
"field": "balance"
}
}
}
}
}
}
结果7:
{
"took": 28,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_terms": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 511,
"buckets": [
{
"key": 27,
"doc_count": 39,
"min_balance": {
"value": 1110
},
"max_balance": {
"value": 46868
}
},
{
"key": 39,
"doc_count": 60,
"min_balance": {
"value": 3589
},
"max_balance": {
"value": 47257
}
},
{
"key": 37,
"doc_count": 42,
"min_balance": {
"value": 1360
},
"max_balance": {
"value": 47546
}
},
{
"key": 32,
"doc_count": 52,
"min_balance": {
"value": 1031
},
"max_balance": {
"value": 48294
}
},
{
"key": 26,
"doc_count": 59,
"min_balance": {
"value": 1447
},
"max_balance": {
"value": 48466
}
},
{
"key": 33,
"doc_count": 50,
"min_balance": {
"value": 1314
},
"max_balance": {
"value": 48734
}
},
{
"key": 24,
"doc_count": 42,
"min_balance": {
"value": 1011
},
"max_balance": {
"value": 48745
}
},
{
"key": 31,
"doc_count": 61,
"min_balance": {
"value": 2384
},
"max_balance": {
"value": 48758
}
},
{
"key": 34,
"doc_count": 49,
"min_balance": {
"value": 3001
},
"max_balance": {
"value": 48997
}
},
{
"key": 29,
"doc_count": 35,
"min_balance": {
"value": 3596
},
"max_balance": {
"value": 49119
}
}
]
}
}
}
示例8:筛选分组-正则表达式匹配值
GET /_search
{
"aggs" : {
"tags" : {
"terms" : {
"field" : "tags",
"include" : ".*sport.*",
"exclude" : "water_.*"
}
}
}
}
示例9:筛选分组-指定值列表
GET /_search
{
"aggs" : {
"JapaneseCars" : {
"terms" : {
"field" : "make",
"include" : ["mazda", "honda"]
}
},
"ActiveCarManufacturers" : {
"terms" : {
"field" : "make",
"exclude" : ["rover", "jensen"]
}
}
}
}
示例10:根据脚本计算值分组
GET /_search
{
"aggs" : {
"genres" : {
"terms" : {
"script" : {
"source": "doc['genre'].value",
"lang": "painless"
}
}
}
}
}
示例1:缺失值处理
GET /_search
{
"aggs" : {
"tags" : {
"terms" : {
"field" : "tags",
"missing": "N/A"
}
}
}
}
结果10:
{
"took": 2059,
"timed_out": false,
"_shards": {
"total": 58,
"successful": 58,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1015,
"max_score": 1,
"hits": [
{
"_index": "bank",
"_type": "_doc",
"_id": "25",
"_score": 1,
"_source": {
"account_number": 25,
"balance": 40540,
"firstname": "Virginia",
"lastname": "Ayala",
"age": 39,
"gender": "F",
"address": "171 Putnam Avenue",
"employer": "Filodyne",
"email": "virginiaayala@filodyne.com",
"city": "Nicholson",
"state": "PA"
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "44",
"_score": 1,
"_source": {
"account_number": 44,
"balance": 34487,
"firstname": "Aurelia",
"lastname": "Harding",
"age": 37,
"gender": "M",
"address": "502 Baycliff Terrace",
"employer": "Orbalix",
"email": "aureliaharding@orbalix.com",
"city": "Yardville",
"state": "DE"
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "99",
"_score": 1,
"_source": {
"account_number": 99,
"balance": 47159,
"firstname": "Ratliff",
"lastname": "Heath",
"age": 39,
"gender": "F",
"address": "806 Rockwell Place",
"employer": "Zappix",
"email": "ratliffheath@zappix.com",
"city": "Shaft",
"state": "ND"
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "119",
"_score": 1,
"_source": {
"account_number": 119,
"balance": 49222,
"firstname": "Laverne",
"lastname": "Johnson",
"age": 28,
"gender": "F",
"address": "302 Howard Place",
"employer": "Senmei",
"email": "lavernejohnson@senmei.com",
"city": "Herlong",
"state": "DC"
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "126",
"_score": 1,
"_source": {
"account_number": 126,
"balance": 3607,
"firstname": "Effie",
"lastname": "Gates",
"age": 39,
"gender": "F",
"address": "620 National Drive",
"employer": "Digitalus",
"email": "effiegates@digitalus.com",
"city": "Blodgett",
"state": "MD"
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "145",
"_score": 1,
"_source": {
"account_number": 145,
"balance": 47406,
"firstname": "Rowena",
"lastname": "Wilkinson",
"age": 32,
"gender": "M",
"address": "891 Elton Street",
"employer": "Asimiline",
"email": "rowenawilkinson@asimiline.com",
"city": "Ripley",
"state": "NH"
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "183",
"_score": 1,
"_source": {
"account_number": 183,
"balance": 14223,
"firstname": "Hudson",
"lastname": "English",
"age": 26,
"gender": "F",
"address": "823 Herkimer Place",
"employer": "Xinware",
"email": "hudsonenglish@xinware.com",
"city": "Robbins",
"state": "ND"
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "190",
"_score": 1,
"_source": {
"account_number": 190,
"balance": 3150,
"firstname": "Blake",
"lastname": "Davidson",
"age": 30,
"gender": "F",
"address": "636 Diamond Street",
"employer": "Quantasis",
"email": "blakedavidson@quantasis.com",
"city": "Crumpler",
"state": "KY"
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "208",
"_score": 1,
"_source": {
"account_number": 208,
"balance": 40760,
"firstname": "Garcia",
"lastname": "Hess",
"age": 26,
"gender": "F",
"address": "810 Nostrand Avenue",
"employer": "Quiltigen",
"email": "garciahess@quiltigen.com",
"city": "Brooktrails",
"state": "GA"
}
},
{
"_index": "bank",
"_type": "_doc",
"_id": "222",
"_score": 1,
"_source": {
"account_number": 222,
"balance": 14764,
"firstname": "Rachelle",
"lastname": "Rice",
"age": 36,
"gender": "M",
"address": "333 Narrows Avenue",
"employer": "Enaut",
"email": "rachellerice@enaut.com",
"city": "Wright",
"state": "AZ"
}
}
]
},
"aggregations": {
"tags": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": "N/A",
"doc_count": 1014
},
{
"key": "red",
"doc_count": 1
}
]
}
}
}
2. filter Aggregation 对满足过滤查询的文档进行聚合计算
在查询命中的文档中选取符合过滤条件的文档进行聚合,先过滤再聚合
示例1:
POST /bank/_search?size=0
{
"aggs": {
"age_terms": {
"filter": {"match":{"gender":"F"}},
"aggs": {
"avg_age": {
"avg": {
"field": "age"
}
}
}
}
}
}
结果1:
{
"took": 163,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_terms": {
"doc_count": 493,
"avg_age": {
"value": 30.3184584178499
}
}
}
}
3. Filters Aggregation 多个过滤组聚合计算
示例1:
准备数据:
PUT /logs/_doc/_bulk?refresh
{"index":{"_id":1}}
{"body":"warning: page could not be rendered"}
{"index":{"_id":2}}
{"body":"authentication error"}
{"index":{"_id":3}}
{"body":"warning: connection timed out"}
获取组合过滤后聚合的结果:
GET logs/_search
{
"size": 0,
"aggs": {
"messages": {
"filters": {
"filters": {
"errors": {
"match": {
"body": "error"
}
},
"warnings": {
"match": {
"body": "warning"
}
}
}
}
}
}
}
上面的结果:
{
"took": 18,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 3,
"max_score": 0,
"hits": []
},
"aggregations": {
"messages": {
"buckets": {
"errors": {
"doc_count": 1
},
"warnings": {
"doc_count": 2
}
}
}
}
}
示例2:为其他值组指定key
GET logs/_search
{
"size": 0,
"aggs": {
"messages": {
"filters": {
"other_bucket_key": "other_messages",
"filters": {
"errors": {
"match": {
"body": "error"
}
},
"warnings": {
"match": {
"body": "warning"
}
}
}
}
}
}
}
结果2:
{
"took": 5,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 3,
"max_score": 0,
"hits": []
},
"aggregations": {
"messages": {
"buckets": {
"errors": {
"doc_count": 1
},
"warnings": {
"doc_count": 2
},
"other_messages": {
"doc_count": 0
}
}
}
}
}
4. Range Aggregation 范围分组聚合
示例1:
POST /bank/_search?size=0
{
"aggs": {
"age_range": {
"range": {
"field": "age",
"ranges": [
{
"to": 25
},
{
"from": 25,
"to": 35
},
{
"from": 35
}
]
},
"aggs": {
"bmax": {
"max": {
"field": "balance"
}
}
}
}
}
}
结果1:
{
"took": 7,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_range": {
"buckets": [
{
"key": "*-25.0",
"to": 25,
"doc_count": 225,
"bmax": {
"value": 49587
}
},
{
"key": "25.0-35.0",
"from": 25,
"to": 35,
"doc_count": 485,
"bmax": {
"value": 49795
}
},
{
"key": "35.0-*",
"from": 35,
"doc_count": 290,
"bmax": {
"value": 49989
}
}
]
}
}
}
示例2:为组指定key
POST /bank/_search?size=0
{
"aggs": {
"age_range": {
"range": {
"field": "age",
"keyed": true,
"ranges": [
{
"to": 25,
"key": "Ld"
},
{
"from": 25,
"to": 35,
"key": "Md"
},
{
"from": 35,
"key": "Od"
}
]
}
}
}
}
结果2:
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"age_range": {
"buckets": {
"Ld": {
"to": 25,
"doc_count": 225
},
"Md": {
"from": 25,
"to": 35,
"doc_count": 485
},
"Od": {
"from": 35,
"doc_count": 290
}
}
}
}
}
5. Date Range Aggregation 时间范围分组聚合
示例1:
POST /bank/_search?size=0
{
"aggs": {
"range": {
"date_range": {
"field": "date",
"format": "MM-yyy",
"ranges": [
{
"to": "now-10M/M"
},
{
"from": "now-10M/M"
}
]
}
}
}
}
结果1:
{
"took": 115,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"range": {
"buckets": [
{
"key": "*-2017-08-01T00:00:00.000Z",
"to": 1501545600000,
"to_as_string": "2017-08-01T00:00:00.000Z",
"doc_count": 0
},
{
"key": "2017-08-01T00:00:00.000Z-*",
"from": 1501545600000,
"from_as_string": "2017-08-01T00:00:00.000Z",
"doc_count": 0
}
]
}
}
}
6. Date Histogram Aggregation 时间直方图(柱状)聚合
就是按天、月、年等进行聚合统计。可按 year (1y), quarter (1q), month (1M), week (1w), day (1d), hour (1h), minute (1m), second (1s) 间隔聚合或指定的时间间隔聚合。
示例1:
POST /bank/_search?size=0
{
"aggs": {
"sales_over_time": {
"date_histogram": {
"field": "date",
"interval": "month"
}
}
}
}
结果1:
{
"took": 9,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 1000,
"max_score": 0,
"hits": []
},
"aggregations": {
"sales_over_time": {
"buckets": []
}
}
}
7. Missing Aggregation 缺失值的桶聚合
POST /bank/_search?size=0
{
"aggs" : {
"account_without_a_age" : {
"missing" : { "field" : "age" }
}
}
}
8. Geo Distance Aggregation 地理距离分区聚合
参考官网链接:
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-geodistance-aggregation.html