面试问题总结——深度学习

  1. 卷积如何加速?
    img2col和winograd算法。img2col将卷积转化为矩阵乘,通过重排内存,用空间换时间。wingrad是考虑到卷积运算的卷积核固定,通过算法降低计算量提高效率。

  2. 卷积和反卷积的原理

卷积就是正常的滑窗求和计算输出,在步长大于1时会降低输入特征图分辨率。反卷积也就是转置卷积,主要用于上采样输入特征图的分辨率,而且相比于直接无参的插值方式,反卷积拥有可学习的卷积核参数

  1. Dropout层的原理和用法

dropout主要用于防止模型过拟合,是在训练过程中随机剪短某些神经元连接,以降低模型对某些连接产生强依赖,从而提高模型对各种特征的适应性。
Dropout只在训练阶段生效,在test节点不需要。但是为了保持不进行dropout时候网络输出的值与进行dropout时,网络输出值的期望相同。需要进行输出值的比例缩放。例如pytorch中如果设置dropout(0.9),那么在train模式下,输出的值会直接除以0.1。在test的时候,就会直接关闭dropout。

  1. ResNet的优缺点。
    用残差连接的方式解决了深层网络训练存在的梯度消失问题。让浅层特征可以直接与深层相连。

  2. Inception模型结构
    inception系列结构在一定程度上和残差连接类似,通过设置较宽的不同卷积核类型的通路,提高模型的特征提取能力

  3. SENet模型
    通道注意力和空间注意力。通过输入提取不同通道或空间位置的权重,然后再给输入加权,从而激活重要特征、抑制不重要的特征

  4. DenseNet模型
    每一层的输入都来自于它前面所有层的特征图,每一层的输出均会直接连接到它后面所有层的输入

  5. 常用数据增强手段
    常用的几何变换方法:翻转,旋转,裁剪,缩放,平移,抖动
    像素变换方法:加椒盐噪声,高斯噪声,进行高斯模糊,调节亮度饱和度等等。
    其他:cutOut(随机擦除)、Mixup(数据融合)DropBlock

  6. ROIPooling和ROIAlign的区别。

posted @ 2024-01-06 10:26  Lee-zq  阅读(41)  评论(0编辑  收藏  举报