Spark DataSet和RDD与DataFrame转换成DataSet

一、什么是DataSet

        DataSet同RDD和DataFrame一样,也是Spark的一种弹性分布式数据集。它是Spark 1.6增加的新接口。我们可以从JVM的对象构造一个DataSet,然后使用map,flatMap,filter等等这样的函数式变换操作它。

 

二、创建DataSet

        首先需要导入Spark Core、Spark SQL、Hadoop Client依赖包。pox.xml文件如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>com.leboop</groupId>
    <artifactId>mahout</artifactId>
    <version>1.0-SNAPSHOT</version>
    <properties>
        <!-- scala版本号 -->
        <scala.version>2.11</scala.version>
        <!-- spark版本号 -->
        <spark.version>2.3.0</spark.version>
        <!-- hadoop版本 -->
        <hadoop.version>2.7.3</hadoop.version>
    </properties>
    <dependencies>
        <!-- spark -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <!-- spark sql -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_${scala.version}</artifactId>
            <version>${spark.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
        </dependency>
    </dependencies>
</project>

 

1、Seq序列生成DataSet

package com.leboop.rdd

import org.apache.spark.sql.SparkSession

/**
  * Created by LiuErBao on 2018/8/10.
  */

object DataSetDemo {

  case class Person(name: String, age: Int)

  def main(args: Array[String]): Unit = {
    //创建Spark SQL的切入点(RDD的切入点是SparkContext)
    val spark = SparkSession.builder().appName("spark-sql-demo").master("local").getOrCreate()
    //使用toDS()函数需要导入隐士转换的包
    import spark.implicits._
    val caseClassDS = Seq(Person("Andy", 20), Person("Tom", 30)).toDS()
    caseClassDS.show(3)

    //创建DataSet
    val primitiveDS = Seq(1, 2, 3).toDS()
    //通过map操作生成新的DataSet
    val newDS = primitiveDS.map(_ + 1)
    //打印前三行
    newDS.show(3)
  }
}

程序运行结果

+----+---+
|name|age|
+----+---+
|Andy| 20|
| Tom| 30|
+----+---+


+-----+
|value|
+-----+
|    2|
|    3|
|    4|
+-----+

 

2、RDD转换成DataSet

itemdata.data数据文件格式如下:

0162381440670851711,4,7.0
0162381440670851711,11,4.0
0162381440670851711,32,1.0
0162381440670851711,176,27.0
0162381440670851711,183,11.0
0162381440670851711,184,5.0
0162381440670851711,207,9.0
0162381440670851711,256,3.0
0162381440670851711,258,4.0
0162381440670851711,259,16.0
0162381440670851711,260,8.0
0162381440670851711,261,18.0
package com.leboop.rdd

import org.apache.spark.sql.SparkSession


object DataSetDemo {

  case class Data(user_id: String,item_id:String, score: Double)

  def main(args: Array[String]): Unit = {
    //创建Spark SQL的切入点(RDD的切入点是SparkContext)
    val spark = SparkSession.builder().appName("spark-sql-demo").master("local").getOrCreate()
    //创建RDD
    val rdd = spark.sparkContext.textFile("hdfs://192.168.189.21:8020/input/mahout-demo/itemdata.data")
    //RDD转换成DataSet
    import spark.implicits._
    val splitRDD=rdd.map(x=>x.split(","))
    val dataDS= splitRDD.map(x=>Data(x(0),x(1),x(2).toDouble)).toDS()
    dataDS.show(3)
  }
}

先定义了一个case class Data,存储转换后的数据。使用toDS(),需要导入隐士转换需要的包。

程序运行结果

+-------------------+-------+-----+
|            user_id|item_id|score|
+-------------------+-------+-----+
|0162381440670851711|      4|  7.0|
|0162381440670851711|     11|  4.0|
|0162381440670851711|     32|  1.0|
+-------------------+-------+-----+
only showing top 3 rows

 

3、DataFrame转换成DataSet

package com.leboop.rdd

import org.apache.spark.sql.SparkSession

/**
  * Created by LiuErBao on 2018/8/10.
  */

object DataSetDemo {

  case class Data(user_id: String,item_id:String, score: Double)

  def main(args: Array[String]): Unit = {
    //创建Spark SQL的切入点(RDD的切入点是SparkContext)
    val spark = SparkSession.builder().appName("spark-sql-demo").master("local").getOrCreate()
    //创建DataFrame
    val dataDF = spark.read.csv("hdfs://192.168.189.21:8020/input/mahout-demo/itemdata.data")
    import spark.implicits._
    val dataDS= dataDF.map(x=>Data(x(0).toString,x(1).toString,x(2).toString.toDouble))
    dataDS.show(2)
  }
}

运行结果如下:

+-------------------+-------+-----+
|            user_id|item_id|score|
+-------------------+-------+-----+
|0162381440670851711|      4|  7.0|
|0162381440670851711|     11|  4.0|
+-------------------+-------+-----+
only showing top 2 rows

 

三、Spark SQL操作DataSet

步骤:

(1)创建DataSet数据集

(2)由DataSet创建临时视图或者全局视图

(3)DataSet创建sqlContext对象后执行SQL查询,或者spark直接执行SQL查询

程序如下:

package com.leboop.rdd

import org.apache.spark.sql.SparkSession

/**
  * Created by LiuErBao on 2018/8/10.
  */

object DataSetDemo {

  case class Data(user_id: String,item_id:String, score: Double)

  def main(args: Array[String]): Unit = {
    //创建Spark SQL的切入点(RDD的切入点是SparkContext)
    val spark = SparkSession.builder().appName("spark-sql-demo").master("local").getOrCreate()
    //创建RDD
    val rdd = spark.sparkContext.textFile("hdfs://192.168.189.21:8020/input/mahout-demo/itemdata.data")
    //RDD转换成DataSet
    import spark.implicits._
    val splitRDD=rdd.map(x=>x.split(","))
    val dataDS= splitRDD.map(x=>Data(x(0),x(1),x(2).toDouble)).toDS()
    dataDS.createOrReplaceTempView("data")
    dataDS.sqlContext.sql("select user_id,item_id from data").show(2)
    spark.sql("select user_id,score from data").show(2)
  }
}

程序运行结果

+-------------------+-------+
|            user_id|item_id|
+-------------------+-------+
|0162381440670851711|      4|
|0162381440670851711|     11|
+-------------------+-------+
only showing top 2 rows





+-------------------+-----+
|            user_id|score|
+-------------------+-----+
|0162381440670851711|  7.0|
|0162381440670851711|  4.0|
+-------------------+-----+
only showing top 2 rows
posted @ 2018-08-11 10:49  leboop  阅读(500)  评论(0编辑  收藏  举报