制造业物料清单BOM、智能文档阅读、科学文献影响因子、"Celebrated Italian mathematician ZepartzatT Gozinto" 与 高津托图
意大利数学家Z.高津托
意大利伟大数学家Sire Zepartzatt Gozinto的生卒年代是一个谜[1],但是他发明的 “高筋图” 在 制造资源管理、物料清单(BOM)管理、智能阅读、科学文献影响因子计算 等方面具有重要应用。
高津托图
下图是一个制造业物料需求高津托图,节点FP1、FP2分别表示最终产品的需求量,边上的数值表示组装部件所需要的上游零部件的数量,物料清单(BOM)系统需要知道所有零部件的总需求。图中:
Primary Demand(主需求) -- 市场对零部件的需求数量
Secondary Demand(次需求) -- 因产品组装产生的对零部件的需求
Total Demand(总需求)-- 以上两个需求之和
Product No. (产品(拓扑次序)编号)-- 根据组装约束对零部件产品进行拓扑排序的次序数
数学模型
设图中的零部件类型数为n,装配关系(边)数为m
设pd[i]为节点i的主需求(常量)
sd[i]为节点i的次需求(决策变量)
td[i]为节点i的总需求(被动变量)
pd[i]为节点i的产品拓扑次序编号(决策变量)
根据装配逻辑,对任何边k,如果边k的起始节点为a[k],终止节点为b[k],权值为c[k],则:
sd[i]=sum{k=1,...,m;a[k]==i}(c[k]td[b[k]]) | i=1,...,n td[i]=sd[i]+pd[i]|i=1,...,n
把零部件从装配上游到下游排序:
pn[b[k]] >= pn[a[k]] + 1 | k=1,...,m pn[i]>=1|i=1,...,n pn[i]<=n|i=1,...,n
+Leapms模型:
min sum{i=1,...,n}pn[i] subject to sd[i]=sum{k=1,...,m;a[k]==i}(c[k]td[b[k]]) | i=1,...,n td[i]=sd[i]+pd[i]|i=1,...,n pn[b[k]] >= pn[a[k]] + 1 | k=1,...,m pn[i]>=1|i=1,...,n pn[i]<=n|i=1,...,n where m,n are numbers e,pd are sets a[k],b[k],c[k] are numbers | k=1,...,m sd[i],td[i] are variables of nonnegative numbers|i=1,...,n pn[i] is a variable of nonnegative number|i=1,...,n data_relation m=_$(e)/3 n=_$(pd) a[k]=e[3k-2]|k=1,...,m b[k]=e[3k-1]|k=1,...,m c[k]=e[3k] |k=1,...,m data pd={150 50 20 230 0 0 0 0} e={ 3 1 1 4 1 2 4 2 3 4 3 3 4 5 2 5 2 4 6 3 4 6 4 5 7 4 3 7 5 1 8 5 2 }
求解:
+Leapms>load Current directory is "ROOT". ......... gozinto.leap ......... please input the filename:gozinto ================================================================ 1: min sum{i=1,...,n}pn[i] 2: subject to 3: 4: sd[i]=sum{k=1,...,m;a[k]==i}(c[k]td[b[k]]) | i=1,...,n 5: td[i]=sd[i]+pd[i]|i=1,...,n 6: 7: pn[b[k]] >= pn[a[k]] + 1 | k=1,...,m 8: pn[i]>=1|i=1,...,n 9: pn[i]<=n|i=1,...,n 10: 11: where 12: m,n are numbers 13: e,pd are sets 14: a[k],b[k],c[k] are numbers | k=1,...,m 15: sd[i],td[i] are variables of nonnegative numbers|i=1,...,n 16: pn[i] is a variable of nonnegative number|i=1,...,n 17: 18: data_relation 19: m=_$(e)/3 20: n=_$(pd) 21: a[k]=e[3k-2]|k=1,...,m 22: b[k]=e[3k-1]|k=1,...,m 23: c[k]=e[3k] |k=1,...,m 24: data 25: pd={150 50 20 230 0 0 0 0} 26: e={ 27: 3 1 1 28: 4 1 2 29: 4 2 3 30: 4 3 3 31: 4 5 2 32: 5 2 4 33: 6 3 4 34: 6 4 5 35: 7 4 3 36: 7 5 1 37: 8 5 2 38: } ================================================================ >>end of the file. Parsing model: 1D 2R 3V 4O 5C 6S 7End. .................................. number of variables=24 number of constraints=43 .................................. +Leapms>solve The LP is solved to optimal. 找到线性规划最优解.非零变量值和最优目标值如下: ......... pn1*=4 pn2*=4 pn3*=3 pn4*=2 pn5*=3 pn6*=1 pn7*=1 pn8*=1 sd3*=150 sd4*=1360 sd5*=200 sd6*=8630 sd7*=4970 sd8*=400 td1*=150 td2*=50 td3*=170 td4*=1590 td5*=200 td6*=8630 td7*=4970 td8*=400 ......... Objective*=19 ......... +Leapms>
结果
参考文献
[1] Rousseau, R. . (1987). The gozinto theorem: using citations to determine influences on a scientific publication. Scientometrics, 11(3-4), 217-229.