使用 线性规划 解决 数字 排序问题, +Leapms模型
问题
将如下一组数字从大到小排序。
{10, 20, -32, 177, 0, -11.5, 19, 7, 6.2, -6.28, -2.71, 44}
解决办法
建立数学模型,给出各个数字的次序值。
模型
设x[i]为第i个数的次序值。根据排序规则有如下约束:
x[i] <= x[j] -1 | i=1,...,n; j=1,...,n; i<>j; d[i] >d[j]
希望次序值从1开始,最大不超过数字的总数:
x[i] >= 1 | i=1,...,n
x[i] <= n | i=1,...,n
不需要目标:
max 0
最终模型为
max 0 subject to x[i] <= x[j] -1 | i=1,...,n; j=1,...,n; i<>j; d[i] >d[j] x[i] >= 1 | i=1,...,n x[i] <= n | i=1,...,n where n is a number d is a set x[i] is a variable of nonnegative integer| i=1,...,n data_relation n=_$(d) data d={10, 20, -32, 177, 0, -11.5, 19, 7, 6.2, -6.28, -2.71, 44}
求解
+Leapms>load Current directory is "ROOT". ......... sort.leap ......... please input the filename:sort ================================================================ 1: max 0 2: subject to 3: x[i] <= x[j] -1 | i=1,...,n; j=1,...,n; i<>j; d[i] >d[j] 4: x[i] >= 1 | i=1,...,n 5: x[i] <= n | i=1,...,n 6: where 7: n is a number 8: d is a set 9: x[i] is a variable of nonnegative integer| i=1,...,n 10: data_relation 11: n=_$(d) 12: data 13: d={10, 20, -32, 177, 0, -11.5, 19, 7, 6.2, -6.28, -2.71, 44} ================================================================ >>end of the file. Parsing model: 1D 2R 3V 4O 5C 6S 7End. .................................. number of variables=12 number of constraints=90 .................................. +Leapms>mip relexed_solution=0; number_of_nodes_branched=0; memindex=(2,2) The Problem is solved to optimal as an MIP. 找到整数规划的最优解.非零变量值和最优目标值如下: ......... x1* =5 x2* =3 x3* =12 x4* =1 x5* =8 x6* =11 x7* =4 x8* =6 x9* =7 x10* =10 x11* =9 x12* =2 ......... Objective*=0 ......... +Leapms>
对上述结果进行解释,x1*=5即第一个数放在第5位, x2*=3即第2个数放在 第2位,或者说12数字的次序数分别为5,3,12,1,8,11,4,6,7,10,9,2。