生产线平衡问题的+Leapms线性规划方法
知识点
第一类生产线平衡问题,第二类生产线平衡问题
整数线性规划模型,+Leapms模型,直接求解,CPLEX求解
装配生产线平衡问题 (The Assembly Line Balancing Problem)
装配生产线又叫做组装生产线, 是把产品的工艺做串行生产安排的流水生产线。一个产品的组装需要不同的工序来完成,且工序之间有先后次序要求。
下表是Jackson, J. R. . (1956)给出一个产品工序的装配次序要求:
工序 | 执行时长 | 紧前工序 |
1 | 6 | -- |
2 | 2 | 1 |
3 | 5 | 1 |
4 | 7 | 1 |
5 | 1 | 1 |
6 | 2 | 2 |
7 | 3 | 3,4,5 |
8 | 6 | 6 |
9 | 5 | 7 |
10 | 5 | 8 |
11 | 4 | 10,9 |
上表也可以用有向图表示:
生产线平衡问题的目的是:把工序划分成工作站,且满足工序紧前要求。优化目标有两种:(1)在生产节拍被指定时使得工作站数量最少;或(2)在工作站数量被限定情况下使得生产节拍最小。
前一种目标被称为第一类生产线平衡问题,后一种目标被称为第二类生产线平衡问题。
第二类问题生产线平衡问题的建模
(1)问题
已知工作站共有m=5个,工序共有n=11个,极小化生产节拍。
(2)有向图的表达
有向图可以表达为节点的点对集合,例如 e={ 1 2, 1 3, 1 4,...,10 11}
第k条边的前后两个顶点一般被写成 a[k], 和 b[k]。第k条边被记为 (a[k], b[k])
边的数目 ne 是 e 中元素数除以2,即:ne=_$(e)/2
(3)决策变量
设 x[i][j] 为0-1变量,表示工序j是否被分配给工作站i。其中i=1,...,m; j=1,...,n。
(4)依赖变量
设变量c为生产线的节拍
(5)目标是极小化生产节拍,即:
minimize c
(6)约束1: 每个工序被分配给且仅被分配给一个工作站:
sum{i=1,...,m} x[i][j] =1 | j =1,...,n
(7)约束2:节拍大于等于任何一个工作站的执行时长:
c >= sum{j=1,...,n}x[i][j]t[j] | i=1,...,m
(8)约束3:对任何边k,如果其后节点b[k]被分配到工作站i,则其前节点 a[k] 必须被分配到 j=1,...,i 中的某个节点,即:
x[i][b[k]] <= sum{j=1,...,i}x[j][a[k]] | i=1,...,m;k=1,...,ne
第二类问题生产线平衡问题的+leapms模型
//第二类生产线平衡问题 minimize c subject to sum{i=1,...,m} x[i][j] =1 | j =1,...,n c >= sum{j=1,...,n}x[i][j]t[j] | i=1,...,m x[i][b[k]]<=sum{j=1,...,i}x[j][a[k]]|i=1,...,m;k=1,...,ne where m,n,ne are integers t[j] is a number | j=1,...,n e is a set a[k],b[k] is an integer|k=1,...,ne c is a variable of number x[i][j] is a variable of binary|i=1,...,m;j=1,...,n data m=5 n=11 t={6 2 5 7 1 2 3 6 5 5 4} e={ 1 2 1 3 1 3 1 5 2 6 3 7 4 7 5 7 6 8 7 9 8 10 9 11 10 11 } data_relation ne=_$(e)/2 a[k]=e[2k-1]|k=1,...,ne b[k]=e[2k]|k=1,...,ne
第二类问题生产线平衡问题的模型求解
Welcome to +Leapms ver 1.1(162260) Teaching Version -- an LP/LMIP modeling and solving tool.欢迎使用利珀 版本1.1(162260) Teaching Version -- LP/LMIP 建模和求 解工具. +Leapms>load Current directory is "ROOT". ......... p2.leap ......... please input the filename:p2 ================================================================ 1: //第二类生产线平衡问题 2: minimize c 3: 4: subject to 5: sum{i=1,...,m} x[i][j] =1 | j =1,...,n 6: c >= sum{j=1,...,n}x[i][j]t[j] | i=1,...,m 7: x[i][b[k]]<=sum{j=1,...,i}x[j][a[k]]|i=1,...,m;k=1,...,ne 8: 9: where 10: m,n,ne are integers 11: t[j] is a number | j=1,...,n 12: e is a set 13: a[k],b[k] is an integer|k=1,...,ne 14: c is a variable of number 15: x[i][j] is a variable of binary|i=1,...,m;j=1,...,n 16: 17: data 18: m=5 19: n=11 20: t={6 2 5 7 1 2 3 6 5 5 4} 21: e={ 22: 1 2 23: 1 3 24: 1 3 25: 1 5 26: 2 6 27: 3 7 28: 4 7 29: 5 7 30: 6 8 31: 7 9 32: 8 10 33: 9 11 34: 10 11 35: } 36: data_relation 37: ne=_$(e)/2 38: a[k]=e[2k-1]|k=1,...,ne 39: b[k]=e[2k]|k=1,...,ne 40: ================================================================ >>end of the file. Parsing model: 1D 2R 3V 4O 5C 6S 7End. .................................. number of variables=56 number of constraints=81 .................................. +Leapms>mip relexed_solution=9.2; number_of_nodes_branched=0; memindex=(2,2) nbnode=230; memindex=(24,24) zstar=13; GB->zi=10 The Problem is solved to optimal as an MIP. 找到整数规划的最优解.非零变量值和最优目标值如下: ......... c* =10 x1_1* =1 x1_5* =1 x2_2* =1 x2_6* =1 x2_8* =1 x3_3* =1 x3_10* =1 x4_4* =1 x4_7* =1 x5_9* =1 x5_11* =1 ......... Objective*=10 ......... +Leapms>
上面的结果显示, 目标值即最小节拍为10, 分配方案是: 工序1,5分配在工作站1, 工序2,6,8 分配在工作站2, 工序3,10 分配在工作站3, 工序4,7分配在工作站4, 工序9,11分配在工作站5。
第二类生产线平衡问题求解结果图示
第二类生产线平衡问题的+Leapms-Latex数学概念模型
在+Leapms环境下,使用 “latex"命令可以把上面的+Leapms模型直接转换为如下Latex格式的数学概念模型。
第一类生产线平衡问题
由求解第2类生产线平衡问题知道,工作站数是5时,最小节拍是10。假设如果将节拍上限增加到10,问是否能够减小工作站数目。
第一类生产线平衡问题的建模
第一类生产线平衡问题的数学模型见Ritt, M. , & Costa, A. M. . (2015)。
第一类生产线平衡问题的+Leapms模型
//第一类生产线平衡问题 minimize sum{i=1,...,m}y[i] subject to sum{i=1,...,m} x[i][j] =1 | j =1,...,n y[i]c >= sum{j=1,...,n}x[i][j]t[j] | i=1,...,m x[i][b[k]]<=sum{j=1,...,i}x[j][a[k]]|i=1,...,m;k=1,...,ne y[i]<=y[i-1]|i=2,...,m where m,n,ne are integers t[j] is a number | j=1,...,n e is a set a[k],b[k] is an integer|k=1,...,ne c is a number x[i][j] is a variable of binary|i=1,...,m;j=1,...,n y[i] is a variable of binary|i=1,...,m data m=6 n=11 c=12 t={6 2 5 7 1 2 3 6 5 5 4} e={ 1 2 1 3 1 3 1 5 2 6 3 7 4 7 5 7 6 8 7 9 8 10 9 11 10 11 } data_relation ne=_$(e)/2 a[k]=e[2k-1]|k=1,...,ne b[k]=e[2k]|k=1,...,ne
第一类生产线平衡问题的模型求解
Welcome to +Leapms ver 1.1(162260) Teaching Version -- an LP/LMIP modeling and solving tool.欢迎使用利珀 版本1.1(162260) Teaching Version -- LP/LMIP 建模和求 解工具. +Leapms>load Current directory is "ROOT". ......... p1.leap p2.leap ......... please input the filename:p1 1: //第一类生产线平衡问题 2: minimize sum{i=1,...,m}y[i] 3: 4: subject to 5: sum{i=1,...,m} x[i][j] =1 | j =1,...,n 6: y[i]c >= sum{j=1,...,n}x[i][j]t[j] | i=1,...,m 7: x[i][b[k]]<=sum{j=1,...,i}x[j][a[k]]|i=1,...,m;k=1,...,ne 8: y[i]<=y[i-1]|i=2,...,m 9: 10: where 11: m,n,ne are integers 12: t[j] is a number | j=1,...,n 13: e is a set 14: a[k],b[k] is an integer|k=1,...,ne 15: c is a number 16: x[i][j] is a variable of binary|i=1,...,m;j=1,...,n 17: y[i] is a variable of binary|i=1,...,m 18: 19: data 20: m=6 21: n=11 22: c=12 23: t={6 2 5 7 1 2 3 6 5 5 4} 24: e={ 25: 1 2 26: 1 3 27: 1 3 28: 1 5 29: 2 6 30: 3 7 31: 4 7 32: 5 7 33: 6 8 34: 7 9 35: 8 10 36: 9 11 37: 10 11 38: } 39: data_relation 40: ne=_$(e)/2 41: a[k]=e[2k-1]|k=1,...,ne 42: b[k]=e[2k]|k=1,...,ne 43: >>end of the file. Parsing model: 1D 2R 3V 4O 5C 6S 7End. =========================================== number of variables=72 number of constraints=100 int_obj=0 =========================================== +Leapms>mip relexed_solution=3.83333; number_of_nodes_branched=0; memindex=(2,2) nbnode=117; memindex=(12,12) zstar=5.22619; GB->zi=6 nbnode=314; memindex=(38,38) zstar=5.625; GB->zi=6 nbnode=587; memindex=(24,24) zstar=5.01852; GB->zi=5 nbnode=861; memindex=(26,26) zstar=4.25; GB->zi=5 nbnode=1128; memindex=(22,22) zstar=3.83333; GB->zi=5 nbnode=1395; memindex=(38,38) zstar=3.83333; GB->zi=5 nbnode=1680; memindex=(40,40) zstar=6; GB->zi=5 nbnode=1959; memindex=(46,46) zstar=6; GB->zi=5 nbnode=2230; memindex=(30,30) zstar=3.9246; GB->zi=5 nbnode=2487; memindex=(26,26) zstar=4.44444; GB->zi=5 nbnode=2774; memindex=(36,36) zstar=4.16667; GB->zi=4 nbnode=2971; memindex=(20,20) zstar=3.83333; GB->zi=4 nbnode=3149; memindex=(26,26) zstar=4.16667; GB->zi=4 nbnode=3343; memindex=(36,36) zstar=3.91667; GB->zi=4 nbnode=3546; memindex=(20,20) zstar=4.04167; GB->zi=4 The Problem is solved to optimal as an MIP. 找到整数规划的最优解.非零变量值和最优目标值如下: ......... x1_1* =1 x1_2* =1 x1_6* =1 x2_5* =1 x2_8* =1 x2_10* =1 x3_3* =1 x3_4* =1 x4_7* =1 x4_9* =1 x4_11* =1 y1* =1 y2* =1 y3* =1 y4* =1 ......... Objective*=4 ......... +Leapms>
结果显示工作站数可减少到4。分配方式如下面的图示。
第一类生产线平衡问题求解结果图示
第一类生产线平衡问题的CPLEX求解
在+Leapms环境中输入cplex命令即可触发在另外窗口内启动CPLEX求解器对模型进行求解:
+Leapms>cplex You must have licience for Ilo Cplex, otherwise you will violate corresponding copyrights, continue(Y/N)? 你必须有Ilo Cplex软件的授权才能使用此功能,否则会侵犯相应版权, 是否继续(Y/N)?y +Leapms>
Tried aggregator 1 time. MIP Presolve eliminated 24 rows and 3 columns. MIP Presolve modified 71 coefficients. Reduced MIP has 76 rows, 69 columns, and 362 nonzeros. Reduced MIP has 69 binaries, 0 generals, 0 SOSs, and 0 indicators. Presolve time = 0.11 sec. (0.33 ticks) Found incumbent of value 6.000000 after 0.20 sec. (0.40 ticks) Probing fixed 15 vars, tightened 0 bounds. Probing changed sense of 1 constraints. Probing time = 0.00 sec. (0.18 ticks) Cover probing fixed 1 vars, tightened 0 bounds. Tried aggregator 1 time. MIP Presolve eliminated 20 rows and 16 columns. MIP Presolve modified 45 coefficients. Reduced MIP has 56 rows, 53 columns, and 247 nonzeros. Reduced MIP has 53 binaries, 0 generals, 0 SOSs, and 0 indicators. Presolve time = 0.01 sec. (0.21 ticks) Probing fixed 1 vars, tightened 0 bounds. Probing time = 0.02 sec. (0.11 ticks) Tried aggregator 1 time. MIP Presolve eliminated 3 rows and 1 columns. MIP Presolve modified 12 coefficients. Reduced MIP has 53 rows, 52 columns, and 230 nonzeros. Reduced MIP has 52 binaries, 0 generals, 0 SOSs, and 0 indicators. Presolve time = 0.02 sec. (0.15 ticks) Probing time = 0.00 sec. (0.10 ticks) Clique table members: 207. MIP emphasis: balance optimality and feasibility. MIP search method: dynamic search. Parallel mode: deterministic, using up to 4 threads. Root relaxation solution time = 0.05 sec. (0.33 ticks) Nodes Cuts/ Node Left Objective IInf Best Integer Best Bound ItCnt Gap * 0+ 0 6.0000 4.0000 33.33% * 0+ 0 5.0000 4.0000 20.00% 0 0 4.0000 21 5.0000 4.0000 54 20.00% * 0+ 0 4.0000 4.0000 0.00% 0 0 cutoff 4.0000 4.0000 54 0.00% Elapsed time = 0.45 sec. (1.85 ticks, tree = 0.00 MB, solutions = 3) Root node processing (before b&c): Real time = 0.45 sec. (1.85 ticks) Parallel b&c, 4 threads: Real time = 0.00 sec. (0.00 ticks) Sync time (average) = 0.00 sec. Wait time (average) = 0.00 sec. ------------ Total (root+branch&cut) = 0.45 sec. (1.85 ticks) Solution status = Optimal Solution value = 4 x1_1=1 x1_2=1 x1_5=1 x1_6=1 x2_8=1 x2_10=1 x3_3=1 x3_4=1 x4_7=1 x4_9=1 x4_11=1 y1=1 y2=1 y3=1 y4=1
第一类生产线平衡问题的+Leapms-Latex数学概念模型
在+Leapms环境下,使用 “latex"命令可以把上面的+Leapms模型直接转换为如下Latex格式的数学概念模型
参考文献
[1] Jackson, J. R. . (1956). A computing procedure for a line balancing problem. Management Science, 2(3), 261-271.
[2] Ritt, M. , & Costa, A. M. . (2015). Improved integer programming models for simple assembly line balancing, and related problems. International Transactions in Operational Research, 19(8), 455-455.