POJ1149_PIGS(网络流/EK)
PIGS
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 15721 | Accepted: 7021 |
Description
Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of
pigs.
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.
All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.
More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
An unlimited number of pigs can be placed in every pig-house.
Write a program that will find the maximum number of pigs that he can sell on that day.
Input
The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N.
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000.
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line):
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000.
The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line):
A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.
Output
The first and only line of the output should contain the number of sold pigs.
Sample Input
3 3 3 1 10 2 1 2 2 2 1 3 3 1 2 6
Sample Output
7
Source
解题报告
昨天開始学网络流,这是第一题网络流建图的题。
题目意思:
养猪场M个猪圈。每一个猪圈都上锁,主人又没有钥匙。N个顾客买猪。且每一个顾客有一些猪圈的钥匙(这是什么情况,主人没有钥匙。反而买主有钥匙。sad...)
一天,要到养猪场买猪的顾客都会提前告诉养猪场主人。包含拥有的钥匙。买几头猪。养猪场主人能够安排销售计划使得卖出去的猪数目最大。
每当顾客来了。会把他拥有钥匙的猪圈全都打开,养猪场主人挑一些猪买出去,养猪场主人还能够又一次分配被打开猪圈的猪。
猪圈能够容纳猪的数量不限。
思路:
由于一開始猪圈是上锁的。所以把顾客其中转站,另设两节点,源点和汇点。
源点和每一个猪圈的第一个顾客连边。边的权值是猪圈里的猪的数目。
顾客j紧跟着顾客i打开某猪圈,则<i,j>的权值是+oo,表示假设顾客j在顾客i之后打开猪圈,主人能够跟据顾客j的需求把其它猪圈的猪赶到该猪圈,这样顾客j就能够买到尽可能多的猪。
每一个顾客和汇点相连。边权是每一个顾客的需求量。
#include <iostream>
#include <queue>
#include <cstdio>
#include <cstring>
#define inf 99999999
#define M 10100
#define N 1100
using namespace std;
int pigh[M],edge[N][N],p[N],a[N],pre[N],m,n,flow;
queue<int >Q;
void ek()
{
while(1)
{
while(!Q.empty())Q.pop();
memset(a,0,sizeof(a));
memset(p,0,sizeof(p));
a[0]=inf;
Q.push(0);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
for(int v=0;v<=n+1;v++)
{
if(!a[v]&&edge[u][v]>0)
{
a[v]=min(a[u],edge[u][v]);
p[v]=u;
Q.push(v);
}
}
if(a[n+1])break;
}
if(!a[n+1])break;
for(int u=n+1;u!=0;u=p[u])
{
edge[p[u]][u]-=a[n+1];
edge[u][p[u]]+=a[n+1];
}
flow+=a[n+1];
}
}
int main()
{
int i,j,k,u,b;
while(~scanf("%d%d",&m,&n))
{
flow=0;
memset(pigh,0,sizeof(pigh));
memset(edge,0,sizeof(edge));
memset(pre,0,sizeof(pre));
for(i=1; i<=m; i++)
scanf("%d",&pigh[i]);
for(i=1; i<=n; i++)
{
scanf("%d",&k);
while(k--)
{
scanf("%d",&u);
if(!pre[u])
{
edge[pre[u]][i]+=pigh[u];
pre[u]=i;
}
else
{
edge[pre[u]][i]=inf;
pre[u]=i;
}
}
scanf("%d",&b);
edge[i][n+1]+=b;
}
ek();
// for(i=0;i<=n+1;i++)
// {
// for(j=0;j<=n+1;j++)
// {
// cout<<edge[i][j]<<" ";
// }
// cout<<endl;
// }
printf("%d\n",flow);
}
return 0;
}