摘要:
词嵌入向量WordEmbedding的原理和生成方法 WordEmbedding 词嵌入向量(WordEmbedding)是NLP里面一个重要的概念,我们可以利用WordEmbedding将一个单词转换成固定长度的向量表示,从而便于进行数学处理。本文将介绍WordEmbedding的使用方式,并讲解 阅读全文
摘要:
主题模型 LDA 入门(附 Python 代码) 主题模型 LDA 入门(附 Python 代码) 主题模型 LDA 入门(附 Python 代码) 主题模型 LDA 入门(附 Python 代码) 一、主题模型 在文本挖掘领域,大量的数据都是非结构化的,很难从信息中直接获取相关和期望的信息,一种文 阅读全文
摘要:
摘要: 两篇文档是否相关往往不只决定于字面上的词语重复,还取决于文字背后的语义关联。对语义关联的挖掘,可以让我们的搜索更加智能化。本文着重介绍了一个语义挖掘的利器:主题模型。主题模型是对文字隐含主题进行建模的方法。它克服了传统信息检索中文档相似度计算方法的缺点,并且能够在海量互联网数据中自动寻找出文 阅读全文
摘要:
在上一篇《TensorFlow入门之MNIST样例代码分析》中,我们讲解了如果来用一个三层全连接网络实现手写数字识别。但是在实际运用中我们需要更有效率,更加灵活的代码。在TensorFlow实战这本书中给出了更好的实现,他将程序分为三个模块,分别是前向传播过程模块,训练模块和验证检测模块。并且在这个 阅读全文
摘要:
模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量、op、集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重、偏置等变量数值,分为两个文件,一个是.data-00000-of-00001 文件,一个是 .index 文件 che 阅读全文
摘要:
一 RNN概述 前面我们叙述了BP算法, CNN算法, 那么为什么还会有RNN呢?? 什么是RNN, 它到底有什么不同之处? RNN的主要应用领域有哪些呢?这些都是要讨论的问题. 1) BP算法,CNN之后, 为什么还有RNN? 细想BP算法,CNN(卷积神经网络)我们会发现, 他们的输出都是只考虑 阅读全文
摘要:
双向循环神经网络(Bidirectional Recurrent Neural Networks,Bi-RNN),Schuster、Paliwal,1997年首次提出,和LSTM同年。Bi-RNN,增加RNN可利用信息。普通MLP,数据长度有限制。RNN,可以处理不固定长度时序数据,无法利用历史输入 阅读全文
摘要:
本博客默认读者对神经网络与Tensorflow有一定了解,对其中的一些术语不再做具体解释。并且本博客主要以图片数据为例进行介绍,如有错误,敬请斧正。 使用Tensorflow训练神经网络时,我们可以用多种方式来读取自己的数据。如果数据集比较小,而且内存足够大,可以选择直接将所有数据读进内存,然后每次 阅读全文
摘要:
python数据持久存储:pickle模块的基本使用 python的pickle模块实现了基本的数据序列和反序列化。通过pickle模块的序列化操作我们能够将程序中运行的对象信息保存到文件中去,永久存储;通过pickle模块的反序列化操作,我们能够从文件中创建上一次程序保存的对象。 基本接口: pi 阅读全文
摘要:
scipy 图像处理(scipy.misc、scipy.ndimage)、matplotlib 图像处理 scipy 图像处理(scipy.misc、scipy.ndimage)、matplotlib 图像处理 scipy 图像处理(scipy.misc、scipy.ndimage)、matplot 阅读全文