包 logging hashlib copy模块

什么是包?

模块的三种来源: 1.内置的 2 第三方的 3 自定义的 

四种表现形式:  1 使用python编写的代码(.py文件)
    		  2 已被编译为共享库或DLL的C或C++扩展
    		3 包好一组模块的包(文件夹 一系类模块的结合体)      
               4 使用C编写并链接到python解释器的内置模块
那么包其实就是一系类模块的结合体,表现形式就是一个文件夹 ,该文件夹呢内部通常还会带有一个__init__的一个.py文件(包的本质其实还是模块).

首次导入包

向产生一个执行文件的名称空间,
​			1.创建包下面的____init____.py文件名称空间
​			2.执行包下的____init____.py文件中的代码 将产生的代码放入__init___.py的文件的名称空间中
​			3.在执行文件中拿到一个指向包下面的__inter__ .py名称空间的名字
在导入语句中 .号左边肯定是一个包(文件夹)

当你作为包的设计者来说

1.当模块的功能特别多的情况下 应该分文件管理
2.每个模块之间为了避免后期模块改名的问题 你可以使用相对导入(包里面的文件都应该是被导入的模块)

站在包的开发者 如果使用绝对路径来管理的自己的模块 那么它只需要永远以包的路径为基准依次导入模块
站在包的使用者 你必须得将包所在的那个文件夹路径添加到system path中(******)

python2如果要导入包 包下面必须要有__init__.py文件
python3如果要导入包 包下面没有__init__.py文件也不会报错
当你在删程序不必要的文件的时候 千万不要随意删除__init__.py文件

logging模块

分五个等级
import logging    
logging.debug('debug message')  10
logging.info('info message')  20
logging.warning('warning message')  30
logging.error('error message')  40
logging.critical('critical message') 50

灵活配置日志级别,日志格式,输出位置

import logging

file_handler = logging.FileHandler(filename='x1.log', mode='a', encoding='utf-8',)

logging.basicConfig(
    format='%(asctime)s - %(name)s - %(levelname)s -%(module)s:  %(message)s',
    datefmt='%Y-%m-%d %H:%M:%S %p',
    handlers=[file_handler,],
    level=logging.ERROR
)

logging.error('你好')

配置参数
logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为,可用参数有:

filename:用指定的文件名创建FiledHandler,这样日志会被存储在指定的文件中。
filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
format:指定handler使用的日志显示格式。
datefmt:指定日期时间格式。
level:设置rootlogger(后边会讲解具体概念)的日志级别
stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件(f=open(‘test.log’,’w’)),默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。

format参数中可能用到的格式化串:
%(name)s Logger的名字
%(levelno)s 数字形式的日志级别
%(levelname)s 文本形式的日志级别
%(pathname)s 调用日志输出函数的模块的完整路径名,可能没有
%(filename)s 调用日志输出函数的模块的文件名
%(module)s 调用日志输出函数的模块名
%(funcName)s 调用日志输出函数的函数名
%(lineno)d 调用日志输出函数的语句所在的代码行
%(created)f 当前时间,用UNIX标准的表示时间的浮 点数表示
%(relativeCreated)d 输出日志信息时的,自Logger创建以 来的毫秒数
%(asctime)s 字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
%(thread)d 线程ID。可能没有
%(threadName)s 线程名。可能没有
%(process)d 进程ID。可能没有
%(message)s用户输出的消息
1.logger对象:负责产生日志
2.filter对象:过滤日志(了解)
3.handler对象:控制日志输出的位置(文件/终端)
4.formmater对象:规定日志内容的格式
"""
logging配置
"""

import os
import logging.config

# 定义三种日志输出格式 开始

standard_format = '[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]' \
                  '[%(levelname)s][%(message)s]' #其中name为getlogger指定的名字

simple_format = '[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s'

id_simple_format = '[%(levelname)s][%(asctime)s] %(message)s'

# 定义日志输出格式 结束

logfile_dir = os.path.dirname(os.path.abspath(__file__))  # log文件的目录

logfile_name = 'all2.log'  # log文件名

# 如果不存在定义的日志目录就创建一个
if not os.path.isdir(logfile_dir):
    os.mkdir(logfile_dir)

# log文件的全路径
logfile_path = os.path.join(logfile_dir, logfile_name)

# log配置字典
LOGGING_DIC = {
    'version': 1,
    'disable_existing_loggers': False,
    'formatters': {
        'standard': {
            'format': standard_format
        },
        'simple': {
            'format': simple_format
        },
    },
    'filters': {},
    'handlers': {
        #打印到终端的日志
        'console': {
            'level': 'DEBUG',
            'class': 'logging.StreamHandler',  # 打印到屏幕
            'formatter': 'simple'
        },
        #打印到文件的日志,收集info及以上的日志
        'default': {
            'level': 'DEBUG',
            'class': 'logging.handlers.RotatingFileHandler',  # 保存到文件
            'formatter': 'standard',
            'filename': logfile_path,  # 日志文件
            'maxBytes': 1024*1024*5,  # 日志大小 5M
            'backupCount': 5,
            'encoding': 'utf-8',  # 日志文件的编码,再也不用担心中文log乱码了
        },
    },
    'loggers': {
        #logging.getLogger(__name__)拿到的logger配置
    	'': {
            'handlers': ['default', 'console'],  # 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
            'level': 'DEBUG',
            'propagate': True,  # 向上(更高level的logger)传递
        },
    },
}


def load_my_logging_cfg():
    logging.config.dictConfig(LOGGING_DIC)  # 导入上面定义的logging配置
    logger = logging.getLogger(__name__)  # 生成一个log实例
    logger.info('It works!')  # 记录该文件的运行状态

if __name__ == '__main__':
    load_my_logging_cfg()

hashlib模块

hashlib模块 加密的模块
import hashlib  # 这个加密的过程是无法解密的
md = hashlib.sha3_256()  # 生成一个帮你造密文的对象
# md.update('hello'.encode('utf-8'))  # 往对象里传明文数据  update只能接受bytes类型的数据
md.update(b'Jason_@.')  # 往对象里传明文数据  update只能接受bytes类型的数据
print(md.hexdigest())  # 获取明文数据对应的密文

1.不同的算法 使用方法是相同的
密文的长度越长 内部对应的算法越复杂00000
但是
1.时间消耗越长
2.占用空间更大
通常情况下使用md5算法 就可以足够了


import hashlib
# 传入的内容 可以分多次传入 只要传入的内容相同 那么生成的密文肯定相同
md = hashlib.md5()
md.update(b'areyouok?')
md.update(b'are')
md.update(b'you')
md.update(b'ok?')
print(md.hexdigest())  # 408ac8c66b1e988ee8e2862edea06cc7
408ac8c66b1e988ee8e2862edea06cc7

hashlib模块应用场景
1.密码的密文存储
2.校验文件内容是否一致

import hashlib

md = hashlib.md5()
# 公司自己在每一个需要加密的数据之前 先手动添加一些内容
md.update(b'oldboy.com')  # 加盐处理
md.update(b'hello')  # 真正的内容
print(md.hexdigest())
# 动态加盐

import hashlib
def get_md5(data):
    md = hashlib.md5()
    md.update('加盐'.encode('utf-8'))
    md.update(data.encode('utf-8'))
    return md.hexdigest()

password = input('password>>>:')
res = get_md5(password)
print(res)

openpyxl

写
from openpyxl import Workbook
#
#
wb = Workbook()  # 先生成一个工作簿
wb1 = wb.create_sheet('index',0)  # 创建一个表单页  后面可以通过数字控制位置
wb2 = wb.create_sheet('index1')
wb1.title = 'login'  # 后期可以通过表单页对象点title修改表单页名称

wb1['A3'] = 666
wb1['A4'] = 444
wb1.cell(row=6,column=3,value=88888888)
wb1['A5'] = '=sum(A3:A4)'

wb2['G6'] = 999
wb1.append(['username','age','hobby'])
wb1.append(['jason',18,'study'])
wb1.append(['tank',72,'吃生蚝'])
wb1.append(['egon',84,'女教练'])
wb1.append(['sean',23,'会所'])

wb1.append(['nick',28,])
wb1.append(['nick','','秃头'])

保存新建的excel文件
wb.save('test.xlsx')


from openpyxl import load_workbook  # 读文件


wb = load_workbook('test.xlsx',read_only=True,data_only=True)
print(wb)
print(wb.sheetnames)  # ['login', 'Sheet', 'index1']
print(wb['login']['A3'].value)
print(wb['login']['A4'].value)
print(wb['login']['A5'].value)  # 通过代码产生的excel表格必须经过人为操作之后才能读取出函数计算出来的结果值

res = wb['login']
# print(res)
ge1 = res.rows
for i in ge1:
    for j in i:
        print(j.value)


posted @ 2019-07-21 19:17  LD_Dragon  阅读(153)  评论(0编辑  收藏  举报