切金条(哈夫曼、贪心)
这里用到的是哈夫曼编码原理,关于这个知识点的讲解可以看这位博主的,我觉得写的很好点击打开链接
一块金条切成两半,是需要花费和长度数值一样的铜板的。比如长度为20的金条,不管切成长度多大的两半,都要花费20个铜板。一群人想整分整块金条,怎么分最省铜板?例如,给定数组{10,20,30},代表一共三个人,整块金条长度为10+20+30=60. 金条要分成10,20,30三个部分。如果,先把长度60的金条分成10和50,花费60 再把长度50的金条分成20和30,花费50一共花费110铜板。但是如果先把长度60的金条分成30和30,花费60 再把长度30金条分成10和20,花费30 一共花费90铜板。输入一个数组,返回分割的最小代价。
贪心贪最小,利用哈夫曼原理可知,如果是要分成10, 20, 30,那么我先把10, 20加起来需要30代价(也就是30切成10,20),接着把加起来的30代价和原有的30加起来就是60代价,30+60代价就是90代价。也就是从树的顶端往下看,先是60的金条,现在先分成最大的两部分,30和30,需要60代价,接着需要其中一个30分割成10, 20,这个也需要10+20=30代价,那么一共就是90代价
直接上代码
import java.util.PriorityQueue; public class test { public static void main(String[] args) { PriorityQueue<Integer> pq = new PriorityQueue<Integer>(); // 默认小顶堆 int[] a = new int[] {10, 20, 30}; for (int i = 0; i < a.length; ++i) { pq.add(a[i]); } int sum = 0; while (pq.size() > 1) { int cur = pq.poll() + pq.poll(); sum += cur; pq.add(cur); } System.out.println(sum); } }
接着介绍一下建立优先级队列是小顶堆和大顶堆的做法
import java.util.Comparator; import java.util.PriorityQueue; public class Main { public static class MinheapComparator implements Comparator<Integer> { @Override public int compare(Integer o1, Integer o2) { return o1 - o2; // < 0 o1 < o2 负数 } } public static class MaxheapComparator implements Comparator<Integer> { @Override public int compare(Integer o1, Integer o2) { return o2 - o1; // < o2 < o1 } } public static void main(String[] args) { int[] arrForHeap = { 3, 5, 2, 7, 0, 1, 6, 4 }; // min heap PriorityQueue<Integer> minQ1 = new PriorityQueue<>(); for (int i = 0; i < arrForHeap.length; i++) { minQ1.add(arrForHeap[i]); } while (!minQ1.isEmpty()) { System.out.print(minQ1.poll() + " "); } System.out.println(); // min heap use Comparator PriorityQueue<Integer> minQ2 = new PriorityQueue<>(new MinheapComparator()); for (int i = 0; i < arrForHeap.length; i++) { minQ2.add(arrForHeap[i]); } while (!minQ2.isEmpty()) { System.out.print(minQ2.poll() + " "); } System.out.println(); // max heap use Comparator PriorityQueue<Integer> maxQ = new PriorityQueue<>(new MaxheapComparator()); for (int i = 0; i < arrForHeap.length; i++) { maxQ.add(arrForHeap[i]); } while (!maxQ.isEmpty()) { System.out.print(maxQ.poll() + " "); } } }========================================Talk is cheap, show me the code=======================================
CSDN博客地址:https://blog.csdn.net/qq_34115899