linux signal-list
[root@bogon ~]# kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT
17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP
21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU
25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH
29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN
35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4
39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8
43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12
47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14
51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10
55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6
59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2
63) SIGRTMAX-1 64) SIGRTMAX
First the signals described in the original POSIX.1-1990 standard. Signal Value Action Comment ------------------------------------------------------------------------- SIGHUP 1 Term Hangup detected on controlling terminal or death of controlling process SIGINT 2 Term Interrupt from keyboard SIGQUIT 3 Core Quit from keyboard SIGILL 4 Core Illegal Instruction SIGABRT 6 Core Abort signal from abort(3) SIGFPE 8 Core Floating point exception SIGKILL 9 Term Kill signal SIGSEGV 11 Core Invalid memory reference SIGPIPE 13 Term Broken pipe: write to pipe with no readers SIGALRM 14 Term Timer signal from alarm(2) SIGTERM 15 Term Termination signal SIGUSR1 30,10,16 Term User-defined signal 1 SIGUSR2 31,12,17 Term User-defined signal 2 SIGCHLD 20,17,18 Ign Child stopped or terminated SIGCONT 19,18,25 Cont Continue if stopped SIGSTOP 17,19,23 Stop Stop process SIGTSTP 18,20,24 Stop Stop typed at tty SIGTTIN 21,21,26 Stop tty input for background process SIGTTOU 22,22,27 Stop tty output for background process The signals SIGKILL and SIGSTOP cannot be caught, blocked, or ignored. Next the signals not in the POSIX.1-1990 standard but described in SUSv2 and POSIX.1-2001.
Next the signals not in the POSIX.1-1990 standard but described in SUSv2 and POSIX.1-2001. Signal Value Action Comment ------------------------------------------------------------------------- SIGBUS 10,7,10 Core Bus error (bad memory access) SIGPOLL Term Pollable event (Sys V). Synonym of SIGIO SIGPROF 27,27,29 Term Profiling timer expired SIGSYS 12,-,12 Core Bad argument to routine (SVr4) SIGTRAP 5 Core Trace/breakpoint trap SIGURG 16,23,21 Ign Urgent condition on socket (4.2BSD) SIGVTALRM 26,26,28 Term Virtual alarm clock (4.2BSD) SIGXCPU 24,24,30 Core CPU time limit exceeded (4.2BSD) SIGXFSZ 25,25,31 Core File size limit exceeded (4.2BSD) Up to and including Linux 2.2, the default behaviour for SIGSYS, SIGXCPU, SIGXFSZ, and (on architectures other than SPARC and MIPS) SIGBUS was to terminate the process (without a core dump). (On some other Unices the default action for SIGXCPU and SIGXFSZ is to terminate the process without a core dump.) Linux 2.4 con- forms to the POSIX.1-2001 requirements for these signals, terminating the process with a core dump.
Next various other signals. Signal Value Action Comment -------------------------------------------------------------------- SIGIOT 6 Core IOT trap. A synonym for SIGABRT SIGEMT 7,-,7 Term SIGSTKFLT -,16,- Term Stack fault on coprocessor (unused) SIGIO 23,29,22 Term I/O now possible (4.2BSD) SIGCLD -,-,18 Ign A synonym for SIGCHLD SIGPWR 29,30,19 Term Power failure (System V) SIGINFO 29,-,- A synonym for SIGPWR SIGLOST -,-,- Term File lock lost SIGWINCH 28,28,20 Ign Window resize signal (4.3BSD, Sun) SIGUNUSED -,31,- Term Unused signal (will be SIGSYS) (Signal 29 is SIGINFO / SIGPWR on an alpha but SIGLOST on a sparc.) SIGEMT is not specified in POSIX.1-2001, but nevertheless appears on most other Unices, where its default action is typically to terminate the process with a core dump. SIGPWR (which is not specified in POSIX.1-2001) is typically ignored by default on those other Unices where it appears. SIGIO (which is not specified in POSIX.1-2001) is ignored by default on several other Unices. Real-time Signals Linux supports real-time signals as originally defined in the POSIX.1b real-time extensions (and now included in POSIX.1-2001). Linux supports 32 real-time signals, numbered from 32 (SIGRTMIN) to 63 (SIGRT- MAX). (Programs should always refer to real-time signals using notation SIGRTMIN+n, since the range of real-time signal numbers varies across Unices.) Unlike standard signals, real-time signals have no predefined meanings: the entire set of real-time signals can be used for application-defined purposes. (Note, however, that the LinuxThreads implementation uses the first three real-time signals.) The default action for an unhandled real-time signal is to terminate the receiving process. Real-time signals are distinguished by the following: 1. Multiple instances of real-time signals can be queued. By contrast, if multiple instances of a standard signal are delivered while that signal is currently blocked, then only one instance is queued. 2. If the signal is sent using sigqueue(2), an accompanying value (either an integer or a pointer) can be sent with the signal. If the receiving process establishes a handler for this signal using the SA_SIG- INFO flag to sigaction(2) then it can obtain this data via the si_value field of the siginfo_t structure passed as the second argument to the handler. Furthermore, the si_pid and si_uid fields of this struc- ture can be used to obtain the PID and real user ID of the process sending the signal. 3. Real-time signals are delivered in a guaranteed order. Multiple real-time signals of the same type are delivered in the order they were sent. If different real-time signals are sent to a process, they are delivered starting with the lowest-numbered signal. (I.e., low-numbered signals have highest priority.) If both standard and real-time signals are pending for a process, POSIX leaves it unspecified which is delivered first. Linux, like many other implementations, gives priority to standard signals in this case. According to POSIX, an implementation should permit at least _POSIX_SIGQUEUE_MAX (32) real-time signals to be queued to a process. However, Linux does things differently. In kernels up to and including 2.6.7, Linux imposes a system-wide limit on the number of queued real-time signals for all processes. This limit can be viewed and (with privilege) changed via the /proc/sys/kernel/rtsig-max file. A related file, /proc/sys/kernel/rtsig-nr, can be used to find out how many real-time signals are currently queued. In Linux 2.6.8, these /proc interfaces were replaced by the RLIMIT_SIGPENDING resource limit, which specifies a per-user limit for queued signals; see setrlimit(2) for further details.