bzoj3456:城市规划
传送门
感觉这个题是真的神仙啊,思路是真的难想
首先设\(f(i)\)为\(i\)个点的无向连通图个数,然后设\(g(i)\)为\(i\)个点的图的个数(注意,此处不一定联通)
那么我们考虑枚举\(1\)号点所在的联通块的大小
显然有
\[g(n)=\sum_{i=1}^nf(i)\binom{n-1}{i-1}g(n-i)\\
\]
考虑到
\[g(n)=2^{\binom{n}{2}}\\
\]
所以有
\[\sum_{i=1}^{n}f(i)\binom{n-1}{i-1}2^{\binom{n-i}{2}}=2^{\binom{n}{2}}\\
\]
后面的应该就很好推了,这个题主要的难点是考虑枚举\(1\)所在的联通块大小
后面还是套路,把组合数拆开
\[\sum_{i=1}^nf(i)\frac{(n-1)!}{(n-i)!(i-1)!}2^{\binom{n-i}{2}}=2^{\binom{n}{2}}\\
\]
把相同项移到一起去
\[\sum_{i=1}^n\frac{f(i)}{(i-1)!}\frac{2^{\binom{n-i}{2}}}{(n-i)!}=\frac{2^{\binom{n}{2}}}{(n-1)!}\\
\]
这个式子已经很眼熟了,再设
\[A(x)=\sum_{i=0}\frac{f(i)}{(i-1)!}x^i\\
B(x)=\sum_{i=0}\frac{2^{\binom{i}{2}}}{i!}x^i\\
C(x)=\sum_{i=0}\frac{2^{\binom{i}{2}}}{(i-1)!}x^i\\
\]
很显然有
\[C(x)=A(x)B(x)\\
A(x)=C(x)B(x)^{-1}
\]
然后就可以多项式求逆+NTT了
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<queue>
#include<cmath>
using namespace std;
void read(int &x){
char ch;bool ok;
for(ok=0,ch=getchar();!isdigit(ch);ch=getchar())if(ch=='-')ok=1;
for(x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());if(ok)x=-x;
}
#define rg register
const int maxn=4e5+10,mod=1004535809,g=3,gi=334845270,modd=mod-1;
int n,a[maxn],b[maxn],c[maxn],m,fac[maxn],inv[maxn],len,ans,r[maxn],mx;
int mul(int x,int y){return 1ll*x*y-1ll*x*y/mod*mod;}
int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
int del(int x,int y){return x-y<0?x-y+mod:x-y;}
int mi(int a,int b){
int ans=1;
while(b){
if(b&1)ans=mul(ans,a);
b>>=1,a=mul(a,a);
}
return ans;
}
void ntt(int *a,int n,int f){
for(rg int i=0;i<n;i++)if(r[i]>i)swap(a[i],a[r[i]]);
for(rg int i=1;i<n;i<<=1){
int wn=mi(f?g:gi,(mod-1)/(i<<1));
for(rg int j=0;j<n;j+=i<<1){
int w=1;
for(rg int k=0;k<i;k++){
int x=a[j+k],y=mul(w,a[i+j+k]);
a[j+k]=add(x,y),a[j+k+i]=del(x,y),w=mul(w,wn);
}
}
}
if(f)return ;int inv=mi(n,mod-2);
for(rg int i=0;i<n;i++)a[i]=mul(a[i],inv);
}
void get_inv(int *b,int n){
if(n==1)return b[0]=mi(a[0],mod-2),void();
get_inv(b,(n+1)>>1);
m=n;len=0;
for(n=1;n<=m<<1;n<<=1)len++;
for(rg int i=0;i<n;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(len-1));
for(rg int i=0;i<n;i++)c[i]=a[i];
for(rg int i=m;i<n;i++)c[i]=0;
ntt(b,n,1),ntt(c,n,1);
for(rg int i=0;i<n;i++)b[i]=del(mul(2,b[i]),mul(mul(c[i],b[i]),b[i]));
ntt(b,n,0);
for(rg int i=m;i<n;i++)b[i]=0;
}
int main(){
read(n);fac[0]=inv[0]=1;
for(rg int i=1;i<=n;i++)fac[i]=mul(fac[i-1],i);
inv[n]=mi(fac[n],mod-2);
for(rg int i=n-1;i;i--)inv[i]=mul(inv[i+1],i+1);
for(rg int i=0;i<=n;i++)a[i]=mul(mi(2,1ll*i*(i-1)/2%modd),inv[i]);
get_inv(b,n);n++;
for(rg int i=1;i<n;i++)c[i]=mul(mi(2,1ll*i*(i-1)/2%modd),inv[i-1]);
m=n;len=0;
for(n=1;n<=m<<1;n<<=1)len++;
for(rg int i=0;i<n;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(len-1));
ntt(b,n,1),ntt(c,n,1);
for(rg int i=0;i<n;i++)b[i]=mul(b[i],c[i]);
ntt(b,n,0);
printf("%d\n",mul(b[m-1],fac[m-2]));
}