bzoj4827:[Hnoi2017]礼物
传送门
没想到湖南省选也出板子题啊
先把题目要求的式子拆一下
\[\sum_{i=1}^{n}(a_i+x-b_i)^2\\
=\sum_{i=1}^{n}(a_i^2+b_i^2+x^2+2a_ix-2b_ix-2a_ib_i)\\
=\sum_{i=1}^{n}(a_i^2+b_i^2)+nx^2+2x\sum_{i=1}^{n}(a_i-b_i)-2\sum_{i=1}^{n}a_ib_i
\]
容易发现只有最后的\(2\sum_{i=1}^{n}a_ib_i\)不是定值,其余的全都可以预先处理出来
考虑将\(a\)数组reverse一下
式子就成了这样
\[2\sum_{i=1}^{n}a_{n-i+1}b_i
\]
再倍长一下(应该不用解释吧),然后就可以用fft求解了,最后就查询\(n+1\)到\(2n\)内的最大值就好了
讲一下一个细节:对于\(nx^2+2x\sum_{i=1}^{n}(a_i-b_i)\)用二次函数求解时,注意当\(x\)取负数时,取整应该是减去\(0.5\),\(x\)取正是加上\(0.5\)(原因不用多说,四舍五入之后是最靠近真实值的)
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
void read(int &x) {
char ch; bool ok;
for(ok=0,ch=getchar(); !isdigit(ch); ch=getchar()) if(ch=='-') ok=1;
for(x=0; isdigit(ch); x=x*10+ch-'0',ch=getchar()); if(ok) x=-x;
}
#define rg register
const int maxn=4e5+10;const double pi=acos(-1);
struct complex{double x,y;}a[maxn*2],b[maxn];
int n,m,nn,ans,sum,w,len,r[maxn];double tot;
complex operator-(complex a,complex b){return (complex){a.x-b.x,a.y-b.y};}
complex operator+(complex a,complex b){return (complex){a.x+b.x,a.y+b.y};}
complex operator*(complex a,complex b){return (complex){a.x*b.x-a.y*b.y,a.y*b.x+b.y*a.x};}
void fft(complex *a,int f)
{
for(rg int i=0;i<n;i++)if(r[i]>i)swap(a[r[i]],a[i]);
for(rg int i=1;i<n;i<<=1)
{
complex wn=(complex){cos(pi/i),f*sin(pi/i)};
for(rg int j=0;j<n;j+=(i<<1))
{
complex w=(complex){1,0};
for(rg int k=0;k<i;k++)
{
complex x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y,a[j+k+i]=x-y,w=w*wn;
}
}
}
if(f==-1)for(rg int i=0;i<=m;i++)a[i].x=a[i].x/n+0.5;
}
int main()
{
read(n),read(m),nn=n;
for(rg int i=0,x;i<n;i++)read(x),a[i].x=x,sum+=x*x,tot+=x;
for(rg int i=0,x;i<n;i++)read(x),b[i].x=x,sum+=x*x,tot-=x;
for(rg int i=0;i<n>>1;i++)swap(a[i],a[n-i-1]);
for(rg int i=0;i<n;i++)a[i+n]=a[i];
w=(int)((-tot/n)<0?(-tot/n)-0.5:(-tot/n)+0.5);sum+=n*w*w+tot*2*w;
n<<=1;m=n+nn;for(n=1;n<=m;n<<=1)len++;
for(rg int i=0;i<n;i++)r[i]=(r[i>>1]>>1)|((i&1)<<(len-1));
fft(a,1),fft(b,1);
for(rg int i=0;i<n;i++)a[i]=a[i]*b[i];
fft(a,-1);ans=-1e9;
for(rg int i=0;i<nn;i++)ans=max(ans,(int)(a[i+nn].x));
printf("%d\n",sum-ans*2);
}