bzoj3944:Sum
传送门
杜教筛板子题
又是卡了一晚上的常数
我的hash实现能力似乎差了点,写出来的hash连map都不如
用了点奇技淫巧,拿unordered_map把这题A了
先考虑\(ans2\)
\[ans2=\sum_{i=1}^{n}\mu(i)
\]
看到\(\mu\)就想到了\(\mu*I=ε\)
然后由杜教筛的式子可以得(\(S(n)\)为\(\sum_{i=1}^{n}\mu(i)\))
\[S(n)I(1)=\sum_{i=1}^{n}ε(i)-\sum_{d=2}^{n}I(d)S(\lfloor \frac{n}{d} \rfloor)\\
S(n)=1-\sum_{d=2}^{n}S(\lfloor \frac{n}{d} \rfloor)\\
\]
然后考虑\(ans1\)
\[ans1=\sum_{i=1}^{n}\phi(i)
\]
由于\(\sum_{d|n}\phi(d)=n\)
所以可得\(\phi*I=id\)
同上设\(S(n)=\sum_{i=1}^{n}\phi(i)\)
\[S(n)I(1)=\sum_{i=1}^{n}id(i)-\sum_{d=2}^{n}I(d)S(\lfloor \frac{n}{d} \rfloor)\\
S(n)=(n+1)*n/2-\sum_{d=2}^{n}S(\lfloor \frac{n}{d} \rfloor)
\]
递归分块就好了
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<tr1/unordered_map>
using namespace std;
void read(int &x) {
char ch; bool ok;
for(ok=0,ch=getchar(); !isdigit(ch); ch=getchar()) if(ch=='-') ok=1;
for(x=0; isdigit(ch); x=x*10+ch-'0',ch=getchar()); if(ok) x=-x;
}
#define rg register
const int maxn=4e6+10;bool vis[maxn];
int ans1,T,n,mu[maxn],tot,pri[maxn],phi[maxn],sum[maxn];
tr1::unordered_map<int,long long>w1;
tr1::unordered_map<int,int>w;
long long ans2,sum1[maxn];
void prepare()
{
mu[1]=1,phi[1]=1;
for(rg int i=2;i<=4e6;i++)
{
if(!vis[i])pri[++tot]=i,mu[i]=-1,phi[i]=i-1;
for(rg int j=1;j<=tot&&pri[j]*i<=4e6;j++)
{
vis[i*pri[j]]=1;
if(!(i%pri[j])){phi[i*pri[j]]=phi[i]*pri[j];break;}
else mu[i*pri[j]]=-mu[i],phi[i*pri[j]]=phi[i]*phi[pri[j]];
}
}
for(rg int i=1;i<=4e6;i++)sum[i]=sum[i-1]+mu[i],sum1[i]=sum1[i-1]+phi[i];
}
int solvemu(int n)
{
if(n<=4e6)return sum[n];
if(w[n])return w[n];
int ans=1;
for(rg int i=2,j;i<=n;i=j+1)
{
j=n/(n/i);
ans-=(j-i+1)*solvemu(n/i);
if(j==n)break;
}
return w[n]=ans;
}
long long solvephi(int n)
{
if(n<=4e6)return sum1[n];
if(w1[n])return w1[n];
long long ans=(1ll+n)*n/2;
for(rg int i=2,j;i<=n;i=j+1)
{
j=n/(n/i);
ans-=(j-i+1)*solvephi(n/i);
if(j==n)break;
}
return w1[n]=ans;
}
signed main()
{
read(T),prepare();
while(T--)
{
read(n);
printf("%lld %d\n",solvephi(n),solvemu(n));
}
}