uva 10581 - Partitioning for fun and profit(记忆化搜索+数论)
题目链接:uva 10581 - Partitioning for fun and profit
题目大意:给定m,n,k,将m分解成n份,然后依照每份的个数排定字典序,而且划分时要求ai−1≤ai,然后输出字典序排在k位的划分方法。
解题思路:由于有ai−1≤ai的条件。所以先记忆化搜索处理出组合情况dp[i][j][s]表示第i位为j。而且剩余的未划分数为s的总数为dp[i][j][s],然后就是枚举每一位上的值。推断序列的位置就可以。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 220;
const int maxp = 10;
int M, N;
ll K, dp[maxp+5][maxn+5][maxn+5];
ll dfs (int d, int x, int s) {
if (d == N) {
if (0 == s)
return 1;
else
return 0;
}
ll& ans = dp[d][x][s];
if (ans != -1)
return ans;
ans = 0;
for (int i = x; ; i++) {
if ((N-d) * i > s)
break;
ans += dfs(d+1, i, s-i);
}
return ans;
}
void solve () {
int s = M, t = 1;
for (int i = 1; i < N; i++) {
for (int j = t; ; j++) {
ll u = dp[i][j][s-j];
if (K > u) {
K -= u;
} else {
printf("%d\n", j);
s -= j;
t = j;
break;
}
}
}
printf("%d\n", s);
}
int main () {
int cas;
scanf("%d", &cas);
while (cas--) {
scanf("%d%d%lld", &M, &N, &K);
memset(dp, -1, sizeof(dp));
for (int i = 1; i * N <= M; i++)
ll u = dfs(1, i, M-i);
solve();
}
return 0;
}