奶牛家谱

农民约翰准备购买一群新奶牛。 在这个新的奶牛群中, 每一个母亲奶牛都生两个小奶牛。这些奶牛间的关系可以用二叉树来表示。这些二叉树总共有N个节点(3 <= N < 200)。这些二叉树有如下性质:

每一个节点的度是0或2。度是这个节点的孩子的数目。

树的高度等于K(1 < K < 100)。高度是从根到最远的那个叶子所需要经过的结点数; 叶子是指没有孩子的节点。

有多少不同的家谱结构? 如果一个家谱的树结构不同于另一个的, 那么这两个家谱就是不同的。输出可能的家谱树的个数除以9901的余数。

输入输出格式

输入格式:

 

两个空格分开的整数, N和K。

 

输出格式:

 

一个整数,表示可能的家谱树的个数除以9901的余数。

 

 

 1 #include<iostream>
 2 #include<cstdio>
 3 using namespace std;
 4 const int maxn=507;
 5 const int mod=9901;
 6 int n,k;
 7 int f[maxn][maxn];
 8 int main(){
 9   cin>>n>>k;
10   for(int i=1;i<=k;i++) f[i][1]=1;
11   for(int i=1;i<=k;i++){
12     for(int u=1;u<=n;u+=2){
13       for(int v=1;v<=u;v+=2){
14         f[i][u]=(f[i][u]+f[i-1][v]*f[i-1][u-v-1])%mod;//子树大小包含根节点,所以要从1开始枚举
15       }//二叉只能满或者空,所以+=2
16     }
17   }
18   cout<<(f[k][n]-f[k-1][n]+mod)%mod<<endl;
19   return 0;
20 }

 

posted @ 2018-09-16 21:18  lcan  阅读(388)  评论(0编辑  收藏  举报